
MODERN 
COSMOLOGY 

 

S.G. RUBIN 



General information and basic parameters of the Universe– 1 

• Cosmology - the science about evolution of the Universe 

• Units of measurement 

 1 pc ~ 3 light-year 

 1 light-year ~ 1018 sm 

 Solar mass Msol = 2 ·1033 g 

 Sun luminosity Lsol = 4 ·1033 erg/s 

 

• Planck units (h = c = 1) 

 Planck mass MPl ~ 10-5 г ~1019 GeV 

 Planck length lPl ~ 10-33 sm 

 Plack time tPl ~ 10-44 s 

 

Lecture 1 



General information and basic parameters of the Universe– 2 

• Parameters of our Universe 

 Size of the vizible part ~ 1028  sm ~ 6·103 Mpc 

 Lifetime of the Universe~ 13.7  billion years 

 

• Components of the Universe 

 Dark Energy  

 Hidden mass (dark matter)  

 Baryon matter 

 ~ 1011 of galaxies, concentrated in clusters with voids 
 

 Problem – How many nucleons does Universe contain? 

0.72 

0.24dm 

0.04b 







Facts indicating finiteness of the universe in the past 

1. Cosmological red shift 

2. Lifetime of the old stars around13 billion years 

3. Distant galaxies (galaxies far away) are poor in heavy elements 

4. Fluctuations of CMB temperature (agreement with calculations based 
on13.7 billion years) 

5. Possibility for stars to be born (substance not managed to spread 
uniformly) 

6. Hydrogen is not fully processed into Helium 



Open questions 

1. Weinberg-Salam model and Higgs mechanism 

2. Symmetry breaking mechanism for particles and antiparticles 

3. Early quasars and galaxies formation 

4. The essence of dark matter and dark energy 

5. Extra dimensions: stability, compactness, topology. Why there is only 
four dimensions in our world? 

6. Origin of different sorts of particles. 

7. Explanation for the value of quantities  с, h, G 

8. Unifying of the gravity and quantum theory 

9. Arrow of time 

Problems 2-7 are discussed in these lectures 

Fine tuning of the parameters 



Fine tuning of the Universe (FT) 

• Small change in 
elementary particles 
parameters leads to 
impossibility for complex 
structures to form 

 

• It is very unlikely to hit 
into the unbarred range 

 

• Most likely there are 
different universes with 
all range of parameters 





Dynamic variables– 1 

Universe should be described by dynamic variables 

 

Dynamic variables of gravity is metric tensor  

Coordinates  

Squared interval 

Minkowski space metric (space without rotations and accelerations) 

 

 

In curved space, one can always find a reference system in which 

 

 

Generally the metric tensor is very complex 
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Dynamic variables – 2 

On the scale of 100 Mpc the Universe is homogeneous, so it can be 
considered a perfect fluid with 4-speed 

 

 

For such fluid one can use known hydrodynamic expression for the energy-
momentum tensor 

 

 

Here we introduce the fluid pressure p and energy density ρ 

 

In the stationary reference system 4-speed 

energy-momentum tensor 
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Dynamic variables – 3 

• To describe the inflation usually we introduce scalar fields 

• In the curved space Lagrangian for these fields has the form 

 

 

 

• Gravity affects the dynamics of the metric tensor 
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1. Express light year in inches 
2. What are the Planck mass, size, time? 
3. What is the size of the visible universe? 
4. What are the dynamic variables in gravity? 
5. What is the Riemann tensor?? 

Lecture 2 
 
Questions on lecture1 



Gravity. basic equations– 1 

• General action: 

 

 

 

 

• Here Lm – Lagrangian of matter, R – scalar Ricci, κ – gravitational constant, 

  

• Riemann tensor has a complex dependence on the metric tensor through 
the Christoffel symbols 
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Gravity. basic equations – 2 

• variation of the action S 

 

 

•  leads to the Hilbert-Einstein equation (H-E) 

 

 

• Here energy-momentum tensor (EMT) is defined as follows 

 

 

 

• The equations of motion can be obtained from 
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Friedmann-Robertson-Walker metric – 1 

Consider the case of a homogeneous and isotropic medium, when 

 

Then we can show that the metric tensor depends on one 

function - the scale factor a(t) 

 

 

 

The parameter k can take the values ​​-1, 0, 1, which corresponds to the open 
(hyperboloid), flat and closed universe 

 

Problem reduces to finding the scale factor a(t), associated with a metric 
space and, consequently, the distances between objects. 
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Friedmann-Robertson-Walker metric – 2 

Suppose that the environment is a perfect fluid with energy-momentum 
tensor 

 

 

• From H-E equation we get 
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Friedmann-Robertson-Walker metric – 3 

 

We simplify the equation obtained as follows. We put into 

 

 

 

Equations (00) and (ii) from the H-E system. After simple calculations, we obtain the 
equation 

 

 

 

• Both forms are important. In the last record Hubble parameter was entered 
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Friedmann-Robertson-Walker metric – 4 

+   p=w 

<<1 

We have two equations and three variables : a, p, ρ 
We need to clarify what substance is under consideration. 
To do this one should write the equation of state 
For dust w = 0, for ultrarelativistic gas and photons w = 1/3 
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Now we know how changes the density with increasing scale factor 

Almost always 



Friedmann-Robertson-Walker metric– 5 

• Find an expression for the scale factor 

 

• We start from the equation 

 

 

• Influence of dark energy is still considered unimportant; curvature of 
space is important only at the initial time, and after – negligible 

 

 

 

• Thus, the following equation is transformed into 
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Friedmann-Robertson-Walker metric – 6 

• The solution of this equation 

 

 

 

 

 

 

• Thus, the radiation-dominant stage (RD, t > 10-27 s) 

 

 

• For matter-dominant stage (dust, MD, t > 10000 – 30000 years) 
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The physical meaning of the scale factor dependence on time 

Comoving and physical coordinates and distances. 
(Points to the rubber surface, rulers are physical and attached to the space) 

r – dimensionless tags, a(t) - is dimensional 

 
A 
 
B 

What is the distance from A to B, 
visible from the center and 
expressed in cm? 

( )l R t  

If A and B - standard light emitters, we can find the distance 
to the center of the redshift. To determine the distance AB 
 it is necessary to measure an angle.  

 
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Scale factor– 1 

• square of the interval 
 
 
 

• Distance traveled by light determines causally related area. 
 

• This distance is determined from the condition ds = 0 
 

• However, the very notion of distance in cosmology is very convenient to 
define in different reference systems, depending on the task: it can be 
defined in dimensional physical coordinates or in dimensionless - 
comoving 

• The calculation result is strongly dependent on the reference system! 
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Distance measured simultaneously by chain of observers 

Distance traveled by light 



Scale factor– 3 

• The distance in comoving coordinates is dimensionless, it is like a rubber 
ruler changes its scale depending on the curvature of space 

• scale factor is the dimensional one  

 

• Distance in the physical system (dimensional) 
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Lecture 3 
 
Questions on lecture 2 

1. Connection of vectors with upper and lower indices 
2. Write invariant volume element 
3. Write Hilbert-Einstein action 
4. What is the gravitational redshift 
5. Energy - momentum tensor of an ideal fluid 



De Sitter space – 1 

• Consequence of the H-E equation with the FRW metric and ρ = 0   

 

 

 

 

• The solution of this equation for different values of k 
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De Sitter space – 2 

• At large times t and k = 1 or k = -1 

• The difference is only for short times, because we consider t large enough 
to neglect the differences 

 

 

• We define the distance traveled by light in comoving coordinates 
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De Sitter space – 3 

• What is the distance light will pass for an infinitely long time? 

 

For an infinite time light passes a finite distance. And the later emitted light, the 
smaller the size of the horizon. Causally connected region decreases.  

In comoving coordinates the horizon radius changes, rather than the space itself 

• In physical coordinates 

 

 

• Horizon size in these coordinates 
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Inflation – 1 

• Inflation - an exponentially rapid expansion of the universe 

• For Inflation to arose one need gravity and the scalar field 

 

 

 

• What could be the fluctuation? 

 

 

 

 

Modern value (in planck units): 
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Inflation – 2 

 

• All the time around us, fluctuations appear with E ~ 10-3 MPl and size Δl ~ 
103 lPl   

 

• To the casual observer, the lifetime of such fluctuations is negligible, but 
because its size is much larger than lPl, one can use Einstein's equations to 
describe the processes from the point of view of the internal observer 



a(t), (t) – homogeneous distribution 

Slow-roll approximation 

Friction can be big 

Inflation – 3 



Inflation – 4 

• An important condition for the implementation of inflation is the slow 
change of the scalar field, i.e. 

 

 

• Slow motion is carried, if the term responsible for friction is big 

 

 

• This allows you to further simplify the system of equations 

 

 

 

 

• Solution 
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H Almost de Sitter 

Nend60 

Inflation – 5 



Inflation – 6 

• For this purpose let us represent equation as follows 

 

 

• Express the second derivative 

 

 

• Each of the terms must be small compared to 

• Using the equation for the Hubble parameter and the dynamics of the 
scale factor, we obtain 
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Define more accurately the condition of the slow roll 



Space and field alternation during inflation 
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1. Scale factor 
2. What is Hubble parameter 
3. Connection between energy density with the scale factor 
4. physical and comoving coordinates 
5. The path traveled by light in a time t 

Lecture 4 
 
Questions on lecture 3 



Inflation – 8 

EMT scalar field: 
 
In a period of inflation, the condition satisfied 
 
 
We neglect kinetic term in the Lagrangian 
 
Then 
 
But for ideal fluid 
 
We get ρ = V(φ) and pressure p = - V(φ) < 0 
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