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Dynamical variables – set of parameters that define behavior of the 
system depending on time. 
 
Examples: 
Temperature of the system in the equilibrium process T(t) 
Coordinate of the material point 
 
More complicated object – field: a set of quantities defined in some points 
in space and depending on time 
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q(t) – generic dynamical variable 

Temperature field 
 
Electric field 



Fields are more fundamental objects. Oscillations of the fields near the stationary state can be seen as particles.  
There are another states of the field – filed objects that have energy. 

Notion of the energy density 
Gravitational field is an exceptional case – its energy density can be chosen =0. BUT ONLY LOCALLY! 
Scalar and vector fields 
 
Configurations of the fields – Coulomb, black hole, field of a magnet. 
 
Description of the field dynamics – Action  Minimum of the action Equations of motion 
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2 'V    Prove it  – Exercise in the end of the lecture 

How to find out whether an object is a particle? 



Notion of a “particle” – object with a well-known connection between energy and momentum 
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Equation of a free field. Plane waves – particles – oscillations of the field (t,x) 
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Mass is a parameter before the quadratic term in the Lagrangian 

What is the Lagrangian describing the particle? 
What equation does the field describing the particle obey? 
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Plane wave                    flux of particles with certain energy 
Orders of the field higher than two don’t give plane waves and stationary fluxes and 
interpreted as interactions of the plane waves. 

– Exercise in the end of the 
lecture 
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We are interested in the amplitude of the transition from the point «a» in a  
moment of time t=0 to the point «b» in a moment t. In transitional moments of time 
particle can be situated in any point. That is the trajectory is random. This fact indicates 
completely different way to treat the quantum behavior of the system. 

Quantum physics 
Set of the main postulates: 
a. Rules for quantization (p) 
b. Schrödinger equation 

Let us assume:  
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b. Amplitude of 
the transition 

Let us show that (*) obeys the Schrödinger equation 
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Quantum mechanics and path integrals, R. 
Feynman, A. Hibbs 
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Connection between the classical and quantum descriptions 

We need to have the amplitude of the transition  
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Continual integral 
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Consider the vacuum with                           e.g. electromagnetic wave in the vacuum. 0 constqcl
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Trajectories corresponding to the minimum of the action give the dominant contribution 
to the integral 
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provement 

Another extreme case: 
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One can estimate I from the following plot 
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1. Quadratic term describes the motion of a free particle 
 
2.   Terms                      describe the interaction      2, nyn

Main conclusions 

3. 

4. Classical trajectories give the main contribution to the action, 
dS/dq=0 – all classical physics follow from here 



Observational fact – notation of the equations doesn’t depend on the reference frame. 
This is the property of scalars – by definition. So the action and Lagrangian have to be 
scalars. As a consequence fields cannot transform arbitrarily while the transitions to  
the other reference frame – laws for field transformations should be definite to allow the 
construction of scalars from them. 

How to choose the action? Key observation: there should exist quantities that conserve: 
                                            charge, energy… 
 
It turns out that to satisfy this condition it is sufficient to have the symmetry of the action about  
certain transitions such as 
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That is the action is invariant under 
this group (group of symmetry). 



Operators  --- matrices 

Set of matrices have to be  «closed under the multiplication» 



Spontaneous symmetry breaking 

Example 1 – rod that is compressed by the force less and larger than the critical value. 
 
 
Example 2 – real scalar field – discrete degeneration 
 
 
Example 3 – complex scalar field –  continuum of the ground states 
 
 
Example 4 – rest symmetry – potential with two scalar fields 
 
 
 
What are the average values of the field in the above mentioned cases? 



Symmetries in physics 

Symmetries by the example of the scalar field 

ie  Form the group 
(you should verify this) 

Equations of motion: 
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Symmetry leads to the conservation of some quantities. 
Consider the infinitesimal transformations ie i   
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Equation (*) leads to the conservation of charge with time 



Control: 

3 3

0 0 0 0i i i i

S

Q d x j d x j ds j



         
Equation (*) leads to the conservation of some quantity! 



Writing the coefficient function on the basis of the Lagrangian. 
The beginning. 
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The propagator – particle is situated in the “outer field” 

For a free particle jp =0 
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To do in the end 



This calculation is not obligatory on the lecture 



Spontaneous symmetry breaking 
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Symmetry breaking – choose one of the possible vacuums 

Symmetry of interactions  is the requirement but not sufficient 
The symmetry of the ground state is required 



If there was an interaction with the other field then this field acquires the mass: 
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Important: (the second order of) mass of the particle is proportional to the average 
value of the scalar field and to the coupling constant. 



Spontaneous breaking of the global U(1) symmetry 
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The complex field  . Lagrangian is symmetrical under the transformation 

Minimum of the potential 

Let us choose =0 

Fluctuations of the field can be written as 
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     As a consequence of spontaneous symmetry breaking we 
have the massless (Nambu-Goldstone) field   

Then the Lagrangian in the lowest order 



Questions about the previous lecture 

 

1. Requirements for the theory to have the laws of conservations. 

2. Why do fields transformations form the group? 

3. Give the examples of symmetrical Lagrangian and group of symmetry. 

4. What is the spontaneous symmetry breaking? 

5. How the masses of particles are formed? 

 

 


