
1

MC-generators

Lectures and laboratories

2

Physics of the process

3

Physics of the process:

“event topology” (basic terminology)

4

Basic/clue/process

It is hard. However there can be

simultineously several (semi)hard

interactions (multiple interaction).

Physics of the process:
“event topology” (basic terminology)

5

Physics of the process:
“event topology” (basic terminology)

6

FSR/ISR photons,

gluons

Fragmentation

Physics of the process:
“event topology” (basic terminology)

7

Beam remnants

Multiple interactio

Physics of the process:
“event topology” (basic terminology)

8

Physics of the process:
“event topology” (basic terminology)

9

Physics of the process:
“event topology” (basic terminology)

10

Underlying events

Everything excluding the basic (hard) process:

• FSR/ISR (?)

• beam remnants

• pile-up events (several pp-collisions in one bunch crossing)

• multiple interaction (several (semi)hard parton-parton collision in

one pp-collision)

• detector noise

«Minimum (zero) bias events» contain the most of underlying events

11

«Hard» collisions

(Multiple interactions)

12

Diffracrive interactions

Pomeron
Gap in

pseudorapidity

Reggeon

Pomeron

Reggeon

13

Monte-Carlo method

14

The simplest example of MC method

application: calculation of the area of figure

• Cover the figure by a

grid, calculate the

number of grid cells

which are inside and

this gives you the area

• Shoot at random at the

figure. Count the bullets

that hit it. The area of then

figure is

• S=(Nhit/Ntotal)*S(rectangle)

One needs to know in advance the boundaries

(maximums) within which the figure (function) is enclosed!

15

Example of MC-method application

1.1 1.15 1.2 1.25 1.3 1.35 1.4

mX, GeV

0

1

2

3

4

5

E
,

V
e

G

Algorithm (method «miss-or-hit»):

1) simulation mX:)(~
minmax1min mmrmmX

2) разыгрывается E:

)()}(,5)(min{)(
~

minminmaxmaxmaxmaxmin2minmin mEmEmErmEE

3) check: if

)~(),~(
~

maxmin XX mEmEE , то возврат на шаг 1)

)
~

,~(Em
Edmd

dw
X

X

5) simulation

XEdmd

dw

 XX Edmd

dw
r

Edmd

wd

max
3

~

6) simulation: if)
~

,(
~

Em
Edmd

dw

Edmd

wd
X

XX

, то событие принимается.

4) evaluation

0.5 1 1.5 2 2.5 3

E, GeV

0

100

200

300

400

N
d

d
E 1.5

0.5 1 1.5 2 2.5 3

E, GeV

0

50

100

150

200

250

N
d

d
E

2

0.5 1 1.5 2 2.5 3

E, GeV

0

25

50

75

100

125

150

N
d

d
E

3

0.5 1 1.5 2 2.5 3

E, GeV

0

20

40

60

80

N
d

d
E 5

•<E> if found to 20% less, than it gives direct integration => it is necessary to check a quality of MC-generator

•mx is not specified

ri – разные случайные числа от 0 до 1

16

Application of МС-methods in HEP

Simulation (generation) of

the basic interaction process

(Pythia,…)

detector

Simulation of the processes

in detector (Geant)

Cross

section

Database of

events (the

set of initial

px,py,pz,..)

Pythia

Geant

17

МС-generators

IsaJet

18

alpgen generation of hard multiparton processes in hadronic collisions

blackmax a black-hole event generator, which simulates the experimental signature of microscopic and Planckian black-hole production and evolution at the LHC

in the context of brane-world models with low-scale quantum gravity.

cascade full event generator for ep and pp scattering applying kt-factorisation and unintegrated PDFs

charybdis production and decay of black holes in hadron collider experiments

charybdis2 new version of the black hole event generator

hej a High Energy Physics Monte Carlo generator for multi-jet analyses

herwig an event generator for Hadron Emission Reactions With Interfering Gluons (including SUSY processes)

herwig++ new event generator, written in C++ and built on the experience gained with HERWIG

hijing event generator for high energy heavy ion collisions

Hydjet event generator simulating jet production, jet quenching and flow effects in ultrarelativistic heavy ion collisions

isajet event renerator for pp, pbar p, and e+e- Interactions

jimmy a library for multiparton interactions in HERWIG

MCatNLO a Fortran package for combining a Monte Carlo event generator with NLO calculations of rates for QCD processes

MCFM Monte Carlo for FeMtobarn processes

nlojet++ LO and NLO cross section calculation, using the Catani-Seymour dipole subtraction method

Phojet general purpose event generator based on Dual Parton Model

photos package for QED radiative corrections in decays of resonances

photos++ C++ Interface to PHOTOS

Pomwig Herwig for diffractive interactions

pyquen event generator for simulation of rescattering, radiative and collisional energy loss of hard partons in expanding quark-gluon plasma created in

ultrarelativistic heavy ion collisions

pythia6 The Lund Monte Carlo - general purpose HEP event generator (written in Fortran)

Pythia8 C++ version of pythia6 MC

Sherpa an event-generation framework for high-energy particle collisions

stagen generator for black hole and graviton production

starlight Monte Carlo generator for two-photon and photon-Pomeron interactions between relativistic nuclei and protons.

tauola generation of tau decays including spin polarization

Toprex parton level generator for top quark production

vincia a shower plugin to PYTHIA 8. It is based on the dipole-antenna picture of QCD and focusses on describing quark and gluon radiation with high precision.

winhac event generator for single W-boson production in hadron collisions

AGILe A Generator Interface Library (& executable) which provide a standard steering interface for Fortran generator codes

CLHEP a Class Library for High Energy Physics (No further development is foreseen, except for bug fixes)

FastJet a fast and efficient implementation of various jet algorithms

JetWeb web-based system for MC event generator validation

LHAPDF the Les Houches Accord PDF Interface

HepMC a C++ Event Record for Monte Carlo Generators

HepPDT particle properties from PDG

HepMCAnalysis a tool for generator validation and comparisons

HZtool robust model-to-data comparisons

MC-tester a universal tool for comparisons of Monte Carlo predictions

Professor A tuning tool for Monte Carlo event generators

Rivet a toolkit for validation of Monte Carlo event generators (an object oriented C++ replacement for the Fortran HZtool package)

ThePEG a toolkit for High Energy Physics Event Generation

http://mlm.home.cern.ch/mlm/alpgen/
http://projects.hepforge.org/blackmax/
http://projects.hepforge.org/cascade/
http://www.ippp.dur.ac.uk/montecarlo/leshouches/generators/charybdis/
http://projects.hepforge.org/charybdis2/
http://hej.web.cern.ch/HEJ/
http://hepwww.rl.ac.uk/theory/seymour/herwig/
http://projects.hepforge.org/herwig/
http://www-nsdth.lbl.gov/~xnwang/hijing/
http://lokhtin.web.cern.ch/lokhtin/hydro/hydjet.html
http://www.hep.fsu.edu/~isajet/
http://projects.hepforge.org/jimmy/
http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/
http://mcfm.fnal.gov/
http://www.desy.de/~znagy/Site/NLOJet++.html
http://www-ik.fzk.de/~engel/phojet.html
http://wasm.home.cern.ch/wasm/goodies.html
http://www.ph.unimelb.edu.au/~ndavidson/photos/doxygen/
http://www.pomwig.com/
http://lokhtin.web.cern.ch/lokhtin/pyquen/
http://projects.hepforge.org/pythia6/
http://home.thep.lu.se/~torbjorn/Pythia.html
http://projects.hepforge.org/sherpa/dokuwiki/doku.php
http://cmsdoc.cern.ch/cms/PRS/gentools/www/geners/packages/stagen/stagen.html
http://projects.hepforge.org/starlight/
http://wasm.home.cern.ch/wasm/goodies.html
http://cmsdoc.cern.ch/~spitsky/toprex/toprex.html
http://projects.hepforge.org/vincia/
http://placzek.home.cern.ch/placzek/winhac/
http://projects.hepforge.org/agile/
http://proj-clhep.web.cern.ch/proj-clhep/
http://www.lpthe.jussieu.fr/~salam/fastjet/
http://jetweb.cedar.ac.uk/
http://projects.hepforge.org/lhapdf/
http://lcgapp.cern.ch/project/simu/HepMC/
http://lcgapp.cern.ch/project/simu/HepPDT/
http://hepmcanalysistool.desy.de/
http://projects.hepforge.org/hztool/
http://mc-tester.web.cern.ch/MC-TESTER/
http://mc-tester.web.cern.ch/MC-TESTER/
http://mc-tester.web.cern.ch/MC-TESTER/
http://projects.hepforge.org/professor/
http://projects.hepforge.org/rivet/
http://home.thep.lu.se/ThePEG/

19

Pythia 6.4

http://projects.hepforge.org/pythia6/

http://home.thep.lu.se/~torbjorn/Pythia.html

20 Pythia 6.4 Pythia 8 (C++)

21

Pythia vs other generators

22

Some shortcomings Pythia

always remember that the program does not represent a dead collection of

established truths, but rather one of many possible approaches to the problem of

multiparticle production in high-energy physics, at the frontline of current research.

Be critical! (Manual on Pythia 6.4)

23

Physics models implemented in Pythia

24

Physics models implemented in Pythia

25

Physics models implemented in Pythia

26

Physics models implemented in Pythia

27

Physics models implemented in Pythia

28

Physics models implemented in Pythia

29

Physics models implemented in Pythia

30

Physics models implemented in Pythia

31

Physics models implemented in Pythia

32

Physics models implemented in Pythia

33

Nomenclature
KF (according to PDG) and КС codes

KC = PYCOMP(KF) KF = KCHG(KC,4)

34

Nomenclature
KF (according to PDG) and КС codes

35

Output of the codes

C...Programme PyList.f

C...EXTERNAL statement links PYDATA on most machines.

 EXTERNAL PYDATA

C---

 CALL PYLIST(11) ! PYLIST(12) – full table particle data

 END

Installation and running:

wget www.***/pythia64**.f or through psft

g77 –с pythia64**.o pythia64**.f

pico PyList.f

g77 PyList.f pythia64**.o

./a.out > pylist12

gives KF gives also IDC-codes of decay modes

http://www.***/pythia64**.f

36

Processes in Pythia (ISUB)

37

Processes in Pythia (ISUB)

38

Processes in Pythia (ISUB)

39

Processes in Pythia (ISUB)

40

Processes in Pythia (ISUB)

41

Process setup

PYINIT + MSEL +/ MSUB +/ MSTP +/ MDME +/ …

MSEL

MSEL lets (=0) to make choosing process by “hands” (MSUB +/ MSTP)

MDME

MSEL=0 + MSUB +/ MSTP

PYINIT
PYDCY

PY1ENT

PY2ENT

…

42

Some other parameters
MSTP – see manual

 MSTP(1)=4 – 4-th generation install

 MSEL=4 – switching on of 4-th gen.

 MSUB(81)=1

 MSUB(82)=1 for quarks of 4-th gen.

 MSTP(51) – PDF (D=7 – CTEQ5L)

PMAS(KC,1) – mass of КС-particle

MDCY(KC,1)=0,1 – switching off/on decay (for modes (IDC) switched on with

MDME at branching BRAT(IDC)), excluding resonances

PMAS(KC,2)/ PMAS(KC,2) – width/lifetime (GeV/mm) – does not work for

resonances

MWID(KC)=0,1 – switching off/on resonance decay

CKIN(1/2) – min/max sqrt(s)

CKIN(3/4) – min/max pT (for 22)

CKIN(13/14) – min/max (D=+-40)

43

Common parameters of generated

event

N – the number of products in one event

K(1-4000,1-5)

 K(I,1) – status of i-th (intermediate) product (see manual)

 K(I,2) – KF-code of i-th product (at i-th line)

 K(I,3) – number of line of the parent (if any)

 K(I,4/5) – number of 1st/last daughter (if any)

P(1-4000,1-5)

 P(I,1-5) – px,py,pz,E,m of i-th product

V(1-4000,1-5)

 V(I,1-5) – x,y,z,t,lifetime of i-th product

 COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

44

Some functions of Pythia

CALL PYEVNT – generation of the given event => all the data arrays are filled

out: N, K(I,1-5), P(I,1-5), …

PYEDIT(1) – leave only stable (long living) products – i.e. to decay everything

what decays quickly

PYLIST(2) – printing out of event

PYSTAT (1) – printing out of cross section

PYHIST – drawing of histogram/ CALL PYFILL(1,P(I,4),1D0) – filling/

PYBOOK(1,”Spectrum”,100,0D0,100D0) – booking

CALL PYEXEC – fulfill the chosen options

45

Output of Pythia (1)
http://home.fnal.gov/~mrenna/041207_pythia_tutorial/03_041207_pythia_tutorial_PS_2_sample.out.txt

 Event listing (standard)

 I particle/jet K(I,1) K(I,2) K(I,3) K(I,4) K(I,5) P(I,1) P(I,2) P(I,3) P(I,4) P(I,5)

 1 !p+! 21 2212 0 0 0 0.00000 0.00000 3499.99987 3500.00000 0.93827

 2 !p+! 21 2212 0 0 0 0.00000 0.00000 -3499.99987 3500.00000 0.93827

 ===

 3 !g! 21 21 1 0 0 -1.52733 1.37843 184.46649 184.47796 0.00000

 4 !u! 21 2 2 0 0 0.38909 -0.48905 -224.85248 224.85335 0.00000

 5 !ubar! 21 -2 3 0 0 -0.84004 -2.69293 -100.17106 100.21077 0.00000

 6 !u! 21 2 4 0 0 0.20126 -0.25296 -116.30618 116.30663 0.00000

 7 !Z0! 21 23 0 0 0 -0.63878 -2.94589 -216.47723 216.51739 2.88154

 8 !mu-! 21 13 7 0 0 -0.55408 -2.42260 -79.10463 79.14373 0.10566

 9 !mu+! 21 -13 7 0 0 -0.08470 -0.52330 -137.37260 137.37366 0.10566

 ===

 10 (Z0) 11 23 7 11 12 -0.63878 -2.94589 -216.47723 216.51739 2.88154

 11 mu- 1 13 8 0 0 -0.55408 -2.42260 -79.10463 79.14373 0.10566

 12 mu+ 1 -13 9 0 0 -0.08470 -0.52330 -137.37260 137.37366 0.10566

 13 (u) A 12 2 3 28 28 0.76118 2.14258 -4.98506 5.48906 0.33000

 14 (g) I 12 21 3 28 28 -1.97802 2.50209 183.83048 183.85815 0.00000

 15 (uu_1) V 11 2203 1 28 28 1.02216 -0.90376 2672.07524 2672.0757 0.77133

 ………………………..

Структура

корневого

процесса

46

Output of Pythia (2)
MSTP(125)=0 (D=1) see p.86 of manual

 Event listing (standard)

 I particle/jet K(I,1) K(I,2) K(I,3) K(I,4) K(I,5) P(I,1) P(I,2) P(I,3) P(I,4) P(I,5)

 1 (Z0) 11 23 0 2 3 -0.63878 -2.94589 -216.47723 216.51739 2.88154

 2 mu- 1 13 0 0 0 -0.55408 -2.42260 -79.10463 79.14373 0.10566

 3 mu+ 1 -13 0 0 0 -0.08470 -0.52330 -137.37260 137.37366 0.10566

 4 (u) A 12 2 0 19 19 0.76118 2.14258 -4.98506 5.48906 0.33000

 5 (g) I 12 21 0 19 19 -1.97802 2.50209 183.83048 183.85815 0.00000

 6 (uu_1) V 11 2203 0 19 19 1.02216 -0.90376 2672.07524 2672.07570 0.77133

 7 (d) A 12 1 0 38 38 0.50517 -0.47468 6.86331 6.90611 0.33000

 8 (g) I 12 21 0 38 38 0.10823 -0.62221 -2.75806 2.82944 0.00000

 9 (g) I 12 21 0 38 38 0.60915 -0.18717 0.00388 0.63727 0.00000

 10 (g) I 12 21 0 38 38 -9.03034 -3.15734 -24.98398 26.75286 0.00000

 11 (g) I 12 21 0 38 38 -0.22724 0.10068 1.80241 1.81946 0.00000

 12 (g) I 12 21 0 38 38 -4.29475 2.36977 59.45086 59.65287 0.00000

 13 (g) I 12 21 0 38 38 -3.10020 -1.79857 526.70190 526.71409 0.00000

 14 (g) I 12 21 0 38 38 0.22724 -0.10068 15.51683 15.51882 0.00000

 15 (g) I 12 21 0 38 38 3.10020 1.79857 27.66076 27.89200 0.00000

 16 (g) I 12 21 0 38 38 4.29475 -2.36977 2.90457 5.70064 0.00000

 17 (g) I 12 21 0 38 38 9.03034 3.15734 -1525.02585 1525.05586 0.00000

 18 (ud_0) V 11 2101 0 38 38 -0.38909 0.48905 -1722.58005 1722.58027 0.57933

 ===

 19 (string) 11 92 4 20 37 -0.19468 3.74091 2850.92066 2861.42291 244.90488

 20 (rho0) 11 113 19 96 97 0.58193 1.70730 -3.37863 3.92555 0.86099

 21 p+ 1 2212 19 0 0 -0.02072 -0.13075 0.04995 0.94888 0.93827

 22 nbar0 1 -2112 19 0 0 -0.17745 0.63069 0.16922 1.15788 0.93957

47

Common blocks in fortran 77
COMMON-blocks are used instead of global variables:

In the main programme:

 common /coeff/ alpha, beta

In any subroutine, used the same variables:

 common /coeff/ alpha, beta

http://projects.hepforge.org/pythia6/examples/main60.f

The most full declaration of the Pythia common-blocks is in

48

Tasks

1a) pp , dN/dE

1б) pp(e) , dNe/dE

1в) pp , dN()/dE

2а,б,в) pp+Z

3а,б,в) ppW

4) ppWe , dNe(W)/dE vs dNe(tot)/dE

5) pptt… (PDF), dN/dE

6) ppf4f4 , dNf4/dE

7) ee…

49

Example
ppZ (1)

 PROGRAM Z-mumu

C**

C...All real arithmetic in double precision.

 IMPLICIT DOUBLE PRECISION(A-H, O-Z)

C...Three Pythia functions return integers, so need declaring.

 INTEGER PYK,PYCHGE,PYCOMP

 DIMENSION Dmu(0:3500)

C...EXTERNAL statement links PYDATA on most machines.

 EXTERNAL PYDATA

C...Commonblocks.

C...The event record.

 COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Parameters.

C...Particle properties + some flavour parameters.

 COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)

C...Decay information.

C...Note that dimensions below grew from 4000 to 8000 in Pythia 6.2!

 COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)

C...Selection of hard scattering subprocesses.

 COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

C...Parameters.

 COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C**

C...Number of events, CM energy.

 NEV=1000

 ECM=7000.D0

C**

50

Example
ppZ (2)

C particle: e mu gamma Z0 t

C KF: 11 13 22 23 6

C KC: 11 13 22 23 6

C process: ff->Z/gamma qq->QQ gg->QQ ff->Zg ff->Wg

C ISUB: 1 81 82 15 19

C

C decays: A->N4N4 A->E4E4 A->U4U4 A->D4D4 A->tt

C IDC A=gamma: - 173 169 168 167

C IDC A=Z: 189 188 181 180 179

C...Selection of the processes: pp->Z/gamma->...

 MSEL=0

 MSUB(1)=1 ! =0 - process is switched off, =1 - switched on

 MSTP(43)=3 ! D=3, 1- only gamma, 2- only Z, 3- Z+gamma

C...Switches of needed Z-boson mediated channels

 DO 10 ISUB=174,189

10 MDME(ISUB,1)=0

C....for Z->mumu

 MDME(184,1)=1

C....makes muon decay

c MDCY(PYCOMP(13),1)=1

C...Setting sqrt(s) range acceptable for processes of interest

c CKIN(1)=2.*PMAS(13,1)+0d0

 CALL PYINIT('CMS','p','p',ECM)

c CALL PYINIT('CMS','e-','e+',ECM)

C...Histograms.

 CALL PYBOOK(13,'mu-spectrum',100,0D0,1000D0)

 mu=0 ! <10^31-1

 Emu=0.0

 DATA Dmu/3501*0d0/

51

Example
ppZ (3)

C...Event generation loop.

 DO 200 IEV=1,NEV

 if(mod(iev,100).eq.0) write(*,*) 'begin event no', iev

c if(IEV/5000.eq.IEV/5000.) write(*,*)'number of event = ',IEV

 CALL PYEVNT

c CALL PYEDIT(1)

C...List first event

 IF(IEV.LE.1) CALL PYLIST(2)

C...Counting of particles

 DO 200 I=1,N

 En=P(I,4)

 IF(K(I,2).EQ.13) then

 mu=mu+1

 Emu=Emu+En

 iE=int(En)

 Dmu(iE)=Dmu(iE)+1.D0/NEV

 CALL PYFILL(13,P(I,4),1.D0)

 ENDIF

C...End of event generation loop.

200 CONTINUE

C...Cross section - not relevant in this case. Histograms.

 CALL PYHIST

 CALL PYSTAT(1)

 write(*,*)'multiplicities of mu',real(mu)/NEV

 open(1,file='mu-spectrum.txt',status='new')

 write(1,4)(Dmu(iE),iE=0,1000)

4 format(5(2x,e9.3))

c5 format(122(5(2x,e9.3),/),/,/)

 END

52

CompHEP

http://comphep.sinp.msu.ru/

53

Brief description

Package is aimed for calculation of cross sections and generation of hard

(basic) processes from matrix element (lagrangian) in the lowest order of

perturbation theory. No higher orders, loops, hadronization are possible.

All control is realized through interface (interactively).

Although, distant control is foreseen, but much less suitable.

54

Installation
After registration at the webcite (it is not required for CalcHep), one dowloads the

last version of archive CompHEP.

Additionally, one needs to download and launch Xming (or similar) to work at

remote Linux-server under Windows. In putty, tick on X11. Under Linux, to enter at

server E307 use ssh –x.

Further, follow instructions at the webcite.

mkdir comphep

cd comphep

tar xzvf comphep-XXXX.tgz

cd comphep-XXXXX

./configure или ./configure ---with-gcc4

make

make setup WDIR=$HOME/comphep/run-XXXX

сd run-XXXX

./comphep

- Creation of working

directory

- before it, launch Xming and rm LOCK

55

Example 1
ppZ

56

Example 1
ppZ

Momentum

assignment: 1234

57

Example 1
ppZ

Further, one

needs to repeat

for the processes

with other quarks

(subprocess) and

add the result

Some other options:

Initial states – one can change init.energy, PDF

Model parameters and Constraints – the used parameters (masses,..)

Kinematics – scheme of momentum (particles) transitions (accessible, if ambiguous)

Set/Display distribution – assignment (before integration)/drawing (after) of

distribution (over limited set of variables)

Generate events – event generation (4-momentums of products) F6

Write results – to write results for |M|2 in one of the formats suggested

58

Example 1
ppZ

Output of

CompHEP

(“new

format”)

p1z p2z p3x p3y

p3z p4x p4y p4z q
2

59

Example of ROOT script to read ComHep results (1)
TCanvas *vC1;

TGraph *grin, *grout;

void rd2()

{

// File name

//#include <math.h>

//#include <TH2F.h>

//#include <TH1F.h>

#define Nfiles 5

#define nch 20000

#define nchMU 25000

// Int_t Nfiles = 5;

 TString vInFile [Nfiles] = {"events_1.txt", "events_2.txt", "events_3.txt", $

 Double_t mass = 2000.0, mass2=mass*mass;

 Double_t mu=0.10566, mu2=mu*mu;

 TString vInFileMU [4] = {"/afs/cern.ch/user/b/belotsky/comphep/run/mu/events$

 "/afs/cern.ch/user/b/belotsky/comphep/run/mu/events_2.txt",

 "/afs/cern.ch/user/b/belotsky/comphep/run/mu/events_3.txt",

 "/afs/cern.ch/user/b/belotsky/comphep/run/mu/events_4.txt"}

// File info

// TString str [30];

 TString str1,str2,str3,str4,str5,str6;

 Float_t p1,p2;

 Double_t crosec [Nfiles], crosecMU [4];

 Char_t ch="A";

 Int_t nev [Nfiles], nevMU [4];

// histogram parameters

 Double_t weight [Nfiles];

 Float_t X,Y,w;

// read file and add to fit object

 Double_t p1x [Nfiles][nch], p1y [Nfiles][nch], p1z [Nfiles][nch];

 Double_t p2x [Nfiles][nch], p2y [Nfiles][nch], p2z [Nfiles][nch];

 Double_t ps1 [Nfiles][nch], ps2 [Nfiles][nch];

 Double_t Resx [Nfiles][nch], Resy [Nfiles][nch];

 Double_t pm1x [4][nchMU], pm1y [4][nchMU], pm1z [4][nchMU];

 Double_t pm2x [4][nchMU], pm2y [4][nchMU], pm2z [4][nchMU];

 Double_t psm1 [4][nchMU], psm2 [4][nchMU];

 Double_t Resmx [4][nchMU], Resmy [4][nchMU];

// read file

 cout << endl << "Start of reading data on muon background." << endl;

 for (Int_t Nf=0; Nf<4; Nf++)

 {

 ifstream vInputMU;

 vInputMU.open(vInFileMU[Nf], ios::in);

 Int_t Npos1=1269, Npos2=1347;

 while(ch != '='){

 vInputMU.seekg(Npos1);

 ch = vInputMU.peek();

// cout << Npos1 << " and ch = " << ch << endl;

 Npos1++;}

 vInputMU.seekg(Npos1);

 vInputMU >> crosecMU[Nf];

// cout << "muon partial cross section = " << crosecMU[Nf] << endl;

 while(ch != ':'){

 vInputMU.seekg(Npos2);

 ch = vInputMU.peek();

 Npos2++;}

 Int_t L, Nposi=Npos1+10;

 for(Int_t i=0; i<12;){

 vInputMU.seekg(Nposi); ch=vInputMU.peek();

 if(ch == ':'){if(i == 0){L=Nposi;} i++;}

 Nposi++;}

 L=Nposi-L-1;

// cout << "Lenght of line is " << L << endl;

 Int_t ich=0;

 while(! vInputMU.eof()){

 vInputMU.seekg(Npos2);

 vInputMU >> pm1x[Nf][ich] >> ch >> pm1y[Nf][ich] >> ch >> pm1z[Nf][ich] >> $

 vInputMU >> pm2x[Nf][ich] >> ch >> pm2y[Nf][ich] >> ch >> pm2z[Nf][ich];

 psm1[Nf][ich]=pm1x[Nf][ich]*pm1x[Nf][ich]+pm1y[Nf][ich]*pm1y[Nf][ich]+pm1z[$

 psm2[Nf][ich]=pm2x[Nf][ich]*pm2x[Nf][ich]+pm2y[Nf][ich]*pm2y[Nf][ich]+pm2z[$

 Npos2=Npos2+L;

 ich++;}

 nevMU[Nf]=ich-1;

 cout << "Number of events in " << Nf+1 << " channel is " << nevMU[Nf] << en$

 vInputMU.close();

}

60

Double_t crosectotMU = 0.0;

 for(Int_t Nf=0; Nf<4; Nf++){

 crosectotMU += 2.*crosecMU[Nf];}

 cout << "Total muon cross section = " << crosectotMU << " pb." << endl;

 cout << endl << "Start of reading data on useful signal." << endl;

 for (Int_t Nf=0; Nf<Nfiles; Nf++)

 {

 ifstream vInput;

 vInput.open(vInFile[Nf], ios::in);

 Int_t Npos1=1269, Npos2=1347;

 while(ch != '='){

 vInput.seekg(Npos1);

 ch = vInput.peek();

// cout << Npos1 << " and ch = " << ch << endl;

 Npos1++;}

 vInput.seekg(Npos1);

 vInput >> crosec[Nf];

 while(ch != ':'){

 vInput.seekg(Npos2);

 ch = vInput.peek();

 Npos2++;}

 Int_t L, Nposi=Npos1+10;

 for(Int_t i=0; i<12;){

 vInput.seekg(Nposi); ch=vInput.peek();

 if(ch == ':'){if(i == 0){L=Nposi;} i++;}

 Nposi++;}

 L=Nposi-L-1;

// cout << "Lenght of line is " << L << endl;

 Int_t ich=0;

 while(! vInput.eof()){

 vInput.seekg(Npos2);

 vInput >> p1x[Nf][ich] >> ch >> p1y[Nf][ich] >> ch >> p1z[Nf][ich] >> ch;

// cout << p1x[Nf][ich] << " " << p1y[Nf][ich] << " " << p1z[Nf][ich] << end$

 vInput >> p2x[Nf][ich] >> ch >> p2y[Nf][ich] >> ch >> p2z[Nf][ich];

// cout << p2x[Nf][ich] << " " << p2y[Nf][ich] << " " << p2z[Nf][ich] << end$

 ps1[Nf][ich]=p1x[Nf][ich]*p1x[Nf][ich]+p1y[Nf][ich]*p1y[Nf][ich]+p1z[Nf][ic$

 ps2[Nf][ich]=p2x[Nf][ich]*p2x[Nf][ich]+p2y[Nf][ich]*p2y[Nf][ich]+p2z[Nf][ic$

 Npos2=Npos2+L;

 ich++;}

 nev[Nf]=ich-1;

 cout << "Number of events in " << Nf+1 << " channel is " << nev[Nf] << endl;

vInput.close()

 Double_t crosectot = 0.0, fact=2.0;

 for(Int_t Nf=0; Nf<Nfiles; Nf++){

 if(Nf==4){fact=1.0;}

 crosectot += fact*crosec[Nf];}

 cout << "Total useful signal cross section = " << crosectot << " pb." << endl;

// THETA1 VS THETA2 DISTRIBUTION

 tm1 = new TH1F("tm1","MUON theta_1",45,0.,180.);

 ttm2 = new TH2F("ttm2","MUON theta_1 vs theta_2",30,0.,180.,30,0.,180.);

 for (Int_t Nf=0; Nf<4; Nf++) {

 weight[Nf]=crosecMU[Nf]/nevMU[Nf];

 w = float(weight[Nf]);

 for (Int_t iev=0; iev<nevMU[Nf]; iev++){

 Resmx[Nf][iev] = acos(pm1z[Nf][iev]/sqrt(psm1[Nf][iev]))*180./3.14159265;

 Resmy[Nf][iev] = acos(pm2z[Nf][iev]/sqrt(psm2[Nf][iev]))*180./3.14159265;

 X = float(Resmx[Nf][iev]);

 Y = float(Resmy[Nf][iev]);

 ttm2->Fill(X,Y,w);

 tm1->Fill(X,w);

 ttm2->Fill(180.-X,180.-Y,w);

 tm1->Fill(180.-X,w);

 }

 }

……………

 cout << "The following histogrames are created:" << endl;

 cout << "tt2 = theta1 vs theta2\n" << "t1 = theta1\n";

 cout << "e2 = Ekin1 vs Ekin2\n" << "et2 = Ekin1 vs theta1" << endl;

 cout << "m1 = m12\n" << "tr1 = theta12\n" << "mt2 = m12 vs theta12." << endl;

 cout << "And the same for muons named with appending 'm' before 1/2" << endl;

 cout << "Now mt2 is drawing." << endl;

 mt2->Draw("cont1");

/* multigr = new TMultiGraph();

 for (Int_t Nf=0; Nf<Nfiles; Nf++)

 {

 multigr -> Add(gr[Nf]);

 }

 multigr->Draw("ALP");

}

Example of ROOT script to read ComHep results (1)

61

Task 1

Repeat the task fulfilled in Pythia, point a):

calculate cross section, write simulation data

62

Example 2
ppU4U4

63

Example 2
ppU4U4

Or

alternatively,

in more

suitable

manner:

Similarly, for the

rest: variables,

constraints,

particles

Mathematical

operations are very

limited
pm1, pm2, pm3, pm4

G(m3)=(V3) m1.p3=p31

64

Task 2

1) ppLAC
++LAC

— (Q=-2, m=500 GeV, T3=0)

2) pp++— (Q=-2, m=500 GeV, T3=-1/2)

3) pp+- L=e(*-*)A (m=500 GeV)

 3~ (()) (())Zff L L R RL F g T Q Z F f g Q Z f
))

MadGraph v.4

Tree-level event generator

Generation of the code on-line
• Register on the web-site

http://madgraph.hep.uiuc.edu/

• For code generation use MadGraph v4

Installation of MadGraph

• Download MadGraph V4

• Unpack the archive to the working directory
(tar -zxvf MG_ME_V4.5.1.tar)

• Enter the directory MG_ME_V4.5.1, run make

http://madgraph.hep.uiuc.edu/Downloads/MG_ME_V4.5.1.tar.gz
http://madgraph.hep.uiuc.edu/Downloads/MG_ME_V4.5.1.tar.gz
http://madgraph.hep.uiuc.edu/Downloads/MG_ME_V4.5.1.tar.gz

Event generation and calculation of
the cross-section of the process

• Download the generated code (Code Download)

• Unpack the code to the newly created directory
in the folder MG_ME_V4.5.1

http://madgraph.hep.uiuc.edu/MadGraphData/igor_svadkovsky@mail.ru/PROC313/madevent.tar.gz

• For event generation and calculation of the cross-
section of the process e+e-mu+mu- execute
./bin/generate_events in your directory

• If you don’t need event generation you should
execute the following commands one by one
instead of the above mentioned command

 ./bin/survey

 ./bin/refine

In this case you get calculation of the cross-section
only.

• To see the results open results.html in the
SubProcesses directory

• Generated events can be found in the Events
directory

• The format of this file is LHE
(run1_unweighted_events.lhe.gz)

The structure of the file with actual events

Working with cards in MadGraph
• Cards are used to change the parameters of the

model, to choose the energy of colliding particles
and number of generated events, to set the cuts
and so on. These cards can be found in Cards
directory

• To choose the values of the parameters of the
model, masses of gauge bosons, particle widths use
param_card.dat

• Energy and type of colliding particles, cuts, PDF-
functions can be edited with the help of
run_card.dat

param_card.dat

run_card.dat

 Type of colliding particles (lpp1 and lpp2 in the
card run_card.dat)

• -1: PDF for antiproton

• 0: PDF is switched off

• 1: PDF for proton

• 2: PDF for photon

PDF-functions in MadGraph

Generating events off-line
• Execute the following command in the

MG_ME_V4.5.1 directory
cp –R Template Dir_name

• Folder named Dir_name should appear
• Edit the card proc_card.dat

• To generate the code off-line in the Dir_name
directory execute

./bin/newprocess

• To see the diagrams open the file index.html

• Edit the cards param_card.dat and
run_card.dat (e.g. require 200 events)

• ./bin/generate_events

Hadronization

• Download the Pythia and PGS package from the
web-site, install it in the MG_ME_V4.5.1
directory (tar -zxvf …, make)

• For this package to operate you should have
cards pythia_card.dat and pgs_card.dat in the
Cards directory

• Next step is a usual event generation: the
package will operate automatically while the
event generation

http://madgraph.phys.ucl.ac.be/Downloads/pythia-pgs_V2.1.12.tar.gz
http://madgraph.phys.ucl.ac.be/Downloads/pythia-pgs_V2.1.12.tar.gz
http://madgraph.phys.ucl.ac.be/Downloads/pythia-pgs_V2.1.12.tar.gz
http://madgraph.phys.ucl.ac.be/Downloads/pythia-pgs_V2.1.12.tar.gz
http://madgraph.phys.ucl.ac.be/Downloads/pythia-pgs_V2.1.12.tar.gz
http://madgraph.phys.ucl.ac.be/Downloads/pythia-pgs_V2.1.12.tar.gz
http://madgraph.phys.ucl.ac.be/Downloads/pythia-pgs_V2.1.12.tar.gz

• After event generation in the Events directory
some new files appear such as:

pythia_events.lhe.gz

pythia_events.hep.gz

pgs_events.lhco.gz

Working with the MadAnalysis package

• Download the MadAnalysis package from the
web-site, install it in the MG_ME_V4.5.1 directory

• Execute ./plots_events, then indicate the pathway
to the file with actual events (.lhe or .lhco)

• After the execution of the above command in the
MadAnalysis directory you should see the file
plot.top (to work with this file you need
Topdrawer)

http://madgraph.phys.ucl.ac.be/Downloads/MadAnalysis_V1.1.4.tar.gz

Working with Topdrawer

• Download Topdrawer

(see Downloads/MadAnalysis)

• Version for Windows: in the command line execute
the …\td.exe plots.top (file plots.top should be
placed to the same folder as the file td.exe)

• Open plots with the help of gsview

Conversion to the ROOT format

• Download the ExRootAnalysis package from the
web-site, install it to the MG_ME_V4.5.1 directory

• Enter the ExRootAnalysis directory and execute

ExRootSTDHEPConverter
"PATH_TO_YOUR_DIRECTORY"/run1_pythia_events.hep
"PATH_TO_YOUR_DIRECTORY"/run1_pythia_events.root

http://madgraph.phys.ucl.ac.be/Downloads/ExRootAnalysis/ExRootAnalysis_V1.0.7.tar.gz
http://madgraph.phys.ucl.ac.be/Downloads/ExRootAnalysis/ExRootAnalysis_V1.0.7.tar.gz

MC generators: experimentalist
point of view

Real experiment
We obtain new knowledge from experiment of high energy physics not in direct
way.

We have to compare real data with MC simulated data treated in the same way.
MC simulation should base on our modern theoretical knowledge.
The target of this course – MC generation - is the start point to obtain MC
simulated data (mentioned above).

Real data and MC simulation comparison (different MC for signal and

backgrounds)

The chain of treatment with data and simulation we can show schematically
(below). On this scheme we can show where do we use different program
packages and tools to treat (create/change) of the data flows:

MC Generator

Real experimental data

Detector
simulator Reconstruction Analysis

Reconstruction
Analysis

Comparison,
obtaining of
the physical
result

Simulation

Structure of the experiment: Where is the place of MC generators?

MC generator consists on several parts.
There are simple ME generators (calculators) and multi-purpose generators.

Idea

Lagrangian

Feynman rules

ME Generator
Parton shower

developing

Underlying events

Hadronization

Detector
simulation

Raw simulation
data

MadGraph, CompHEP, MCFM, VBFNLO…

Pythia, Herwig,…

LO generators NLO generators

Multi-purpose

MC simulation is more complicated…

Generator MCFM

Generator MCFM

MCFM (Monte Carlo for FeMtobarn processes) – parton level ME generator
(calculator). This genarator simulates different processes on hadron-hadron
colliders with cross-sections on femtobarn level.
For most of the processes matrix elements include more precision cross-section
calculation mechanism – NLO (next to leading order) and take into account
different spin correlations.

This generator uses Fortran code. However it is under full support even now. It
is widely in use for theoretical predictions for the fenmtobarn cross-section
level processes.
In particular, it has been used for Tevatron experiments. Currently CERN
scientists (from LHC experiments) are using it too.
It gives very good and precise predictions for the cross-sections.

Current version is MCFM-6.6 (April 2013)
Site:
http://mcfm.fnal.gov/

http://mcfm.fnal.gov/
http://mcfm.fnal.gov/

Generator MCFM: installation

Download tar archive, unpack.
You can install it with or without additional packages like LHAPDF (additional
parton distribution functions), CERNLIB (possibility to make histograms) etc.

tar –xvf MCFM-6.6.tar.gz
cd MCFM-6.6
./Install
make

(~5-10 minutes)

(You need Fortran90 compiler)

If you need LHAPDF – you
have to edit makefile
(write the LHAPDF lib path)
and execute ‘make’

Generator MCFM: Structure

The directory structure of the installation is as follows:
• Doc. The source for this document.
• Bin. The directory containing the executable mcfm, and various essential
files – notably the options file input.DAT.
• Bin/Pdfdata. The directory containing the PDF data-files.
• obj. The object files produced by the compiler.
• src. The Fortran source files in various subdirectories.
• QCDLoop. The source files to version 1.9 of the Fortran library QCDLoop. The
location of these libraries is set in the makefile (by QLDIR and FFDIR) and may be
changed to reflect existing installations if desired.

Generator MCFM: Run

To start the mcfm generator you should be in Bin folder and execute:
./mcfm [mydir] [myfile.DAT]
By default you’ll use input.DAT in the same folder as a config file.

input.DAT – file, which contains all main settings

Each parameter in the input file is specified by a line such as
value [parameter]
and we will give a description of all the parameters below, together with valid
and/or sensible inputs for value.

• file version number. This should match the version number that is
printed when mcfm is executed.

• nevtrequested. The default for this parameter is -1 and for the following
three parameters it is .false.. This corresponds to the usual
mode of operation where the program produces a cross section and a
selection of histograms. It is possible to generate n-tuples instead of
histograms, as well as unweighted events, for some processes.

Generator MCFM: Settings
• creategrid. Flag to control whether or not to write out a grid file suitable
for further processing by APPLgrid. Please contact the APPLgrid
authors for further information.
• writetop. Flag to control whether or not a Topdrawer histogram output
file is produced. Please refer to Section 6 for further details.
• writedat. Flag to control whether or not the plain histogram output
file is produced. Please refer to Section 6 for further details.
• writegnu. Flag to control whether or not a gnuplot histogram output
file is produced. Please refer to Section 6 for further details.
• writeroot. Flag to control whether or not a ROOT script for plotting
histograms is produced. Please refer to Section 6 for further details.
• writepwg. Flag to control whether a powheg-style analysis file is produced.
This option is available only for a limited number of processes.
As currently implemented it should be viewed as a development tool,
not yet fully supported for the general user.

• nproc. The process to be studied is given by choosing a process number,
according to Table 9 in Appendix B. f(pi) denotes a generic
partonic jet. Processes denoted as “LO” may only be calculated in the
Born approximation. For photon processes, “NLO+F” signifies that
the calculation may be performed both at NLO and also including the
effects of photon fragmentation and experimental isolation.

Generator MCFM: Settings II

• part. This parameter has 5 possible values, described below:
– lord. The calculation is performed at leading order only.
– virt. Virtual (loop) contributions to the next-to-leading order result
are calculated (+counterterms to make them finite), including
also the lowest order contribution.
12
– real. In addition to the loop diagrams calculated by virt, the
full next-to-leading order results must include contributions from
diagrams involving real gluon emission (-counterterms to make
them finite). Note that only the sum of the real and the virt
contributions is physical.
– tota. For simplicity, the tota option simply runs the virt and
real real pieces in series before performing a sum to obtain the
full next-to-leading order result. In this case, the number of points
specified by ncall1 and ncall2 is automatically increased when
performing the real calculation

Generator MCFM: Settings III

• runstring. When MCFM is run, it will write output to several files. The
label runstring will be appended to the names of these files.
• sqrts. This is the centre-of-mass energy, √s of the colliding particles,
measured in GeV.
• ih1, ih2. The identities of the incoming hadrons may be set with these
parameters, allowing simulations for both p¯p (such as the Tevatron) and
pp (such as the LHC). Setting ih1 equal to +1 corresponds to a proton,
whilst −1 corresponds to an anti-proton. Values greater than 1000d0
represent a nuclear collision, as described in Section 5.
• hmass. For processes involving the Higgs boson, this parameter should
be set equal to the putative value of MH.
• scale. This parameter may be used to adjust the value of the renormalization
scale. This is the scale at which αS is evaluated and will
typically be set to a mass scale appropriate to the process (MW, MZ,
Mt for instance). For processes involving vector bosons, setting this
scale to -1d0 chooses a scale equal to the average mass of the bosons
involved.

Generator MCFM: Settings IV

• itmx1, itmx2. The program will perform two runs of VEGAS - once
for pre-conditioning and then the final run to collect the total crosssection
and fill histograms. The number of sweeps for each run is given
by itmx1 (pre-conditioning) and itmx2 (final). The default value for
both is 10.
• ncall1, ncall2. For every sweep of VEGAS, the number of events generated
will be ncall1 in the pre-conditioning stage and ncall2 in the
final run. The number of events required depends upon a number of
factors. The error estimate on a total cross-section will often be reasonable
for a fairly small number of events, whereas accurate histograms
will require a longer run.
• pdlabel. The choice of parton distribution is made by inserting the
appropriate 7-character code from Table 3 or 4 here. As mentioned
above, this also sets the value of αS(MZ).
• NGROUP, NSET. These integers choose the parton distribution functions
to be used when using the PDFLIB package.
• LHAPDF group, LHAPDF set. These choose the parton distribution
functions to be used when using the LHAPDF package – the group
is specified by a character string and the set by an integer.

Generator MCFM: Settings V (jets)

• inclusive. This logical parameter chooses whether the calculated
cross-section should be inclusive in the number of jets found at NLO.
An exclusive cross-section contains the same number of jets at nextto-
leading order as at leading order. An inclusive cross-section may
instead contain an extra jet at NLO.
• algorithm. This specifies the jet-finding algorithm that is used, and
can take the values ktal (for the Run II kT -algorithm), ankt (for the
“anti-kT ” algorithm [6]), cone (for a midpoint cone algorithm), hqrk
(for a simplified cone algorithm designed for heavy quark processes)
and none (to specify no jet clustering at all). The latter option is only
a sensible choice when the leading order cross-section is well-defined
without any jet definition: e.g. the single top process, q¯q′ → t¯b, which
is finite as pT (¯b) → 0.
• ptjet min, |etajet| min, |etajet| max. These specify the values
of pT,min, |η|min and |η|max for the jets that are found by the algorithm.
• Rcut jet. If the final state of the chosen process contains either quarks
or gluons then for each event an attempt will be made to form them
into jets. For this it is necessary to define q the jet separation R =
η2 + φ2 so that after jet combination, all jet pairs are separated
by R > Rcut jet.

Generator MCFM: Settings VI (lepton, photon)

• ptlepton min, |etalepton| max. These specify the values of pT,min
and |η|max for one of the leptons produced in the process.
• etalepton veto. This should be specified as a pair of double precision
numbers that indicate a rapidity range that should be excluded for the
lepton that passes the above cuts.
• ptmin missing. Specifies the minimum missing transverse momentum
(coming from neutrinos).

• frag. This parameter is a logical variable that determines whether the
production of photons by a parton fragmentation process is included.
• ptmin photon. This specifies the value of pmin
T for the photon with the
largest transverse momentum. Note that this cut, together with all the
photon cuts specified in this section of the input file, are applied even
if makecuts is set to .false..
• etamax photon. This specifies the value of |y|max for any photons produced
in the process.
• R(photon,lept) min. Using the usual definition of �R, this requires
that all photon-lepton pairs are separated by �R > R(photon,lept) min.
This parameter must be non-zero for processes in which photon radiation
from leptons is included.

Generator MCFM: processes

Generator MCFM: processes II

Generator MCFM: processes III

Generator MCFM: processes IV

Generator MCFM: Exercise

Process 300:
pp->Zγ->eeγ
Obtain:
σ -?
σ(PDF= cteq6 l, mstw8nl)-?
σ(photonptmin=20GeV,30GeV,40GeV,50GeV,60GeV)-?

LHAPDF package

Package gives a simple possibility to use additional (modern) PDF-sets (parton
distribution functions) by generators.
Site: https://lhapdf.hepforge.org/

Use version 5 for installation! 6-th needs more packages to be installed: the
Boost C++ utility library (http://www.boost.org) and the yaml-cpp
(http://code.google.com/p/yaml-cpp/) parser.

Installation:
tar -xvzf lhapdf-v.r.p.tar.gz
cd lhapdf-v.r.p
./configure --prefix=/path/to/directory
make
make install

However, folder in prefix should not be the same as folder where program
has been unpacked (lhapdf-v.r.p)

(~5 minutes)

https://lhapdf.hepforge.org/
http://www.boost.org/

Generator Herwig/Herwig++

Multipurpose generator Herwig

Hadron Emission Reactions With Interfering Gluons
Herwig++ is a general-purpose event generator for the simulation of high-energy
lepton-lepton, lepton-hadron and hadron-hadron collisions with special emphasis
on the accurate simulation of QCD radiation.

History of this generator starts from full-functional Fortran version.
Fortran Herwig is still under support (last released version is 6.521 –March 2013),
however it is not being developed (only bug fixes etc).
From site: “Version 6.5 has always been foreseen as the final Fortran version of
HERWIG. The recent sub-version releases are tidying up the last few loose ends.”
http://www.hep.phy.cam.ac.uk/theory/webber/Herwig/

For serious event generation, HERWIG has been replaced by Herwig++, version 2.4
of which is already available, providing a complete simulation of most types of
collider events. This new program is on C++ and it has all features and advanages of
old HERWIG.
Currently version 2.7.0 is available on site:
https://herwig.hepforge.org/

Let’s start from Herwig++!

http://www.hep.phy.cam.ac.uk/theory/webber/Herwig/
https://herwig.hepforge.org/

Generator Herwig++

Herwig++ already includes several features more advanced than the last
FORTRAN version. Herwig++ provides a full simulation of high energy
collisions with the following special features:

• Initial- and final-state QCD jet evolution taking account of soft gluon
interference via angular ordering;
• A detailed treatment of the suppression of QCD radiation from massive
particles, the deadcone effect;
• The simulation of BSM physics including correlations between the
production and decay of the BSM particles together with the ability to add
new models by simply encoding the Feynman rules;
• An eikonal model for multiple partonic scatterings to describe the
underlying event;
• A cluster model of the hadronization of jets based on non-perturbative
gluon splitting;
• A sophisticated model of hadron and tau decays using matrix elements to
give the momenta of the decay products for many modes and including a
detailed treatment of off-shell effects and spin correlations.

Generator Herwig++: installation

Herwig++ installation includes installation Herwig++ itself and special tool
ThePEG (Toolkit for High Energy Physics Event Generation). Herwig++ is based
on this tool.

All additional packages can be installed before ThePEG and Herwig configuration.
If you need install them afterwards – you should re-configure ThePEG and
Herwig++.

Installation:

ThePEG
Download ThePEG, then

tar xjvf ThePEG-*.tar.bz2
cd ThePEG*
./configure --prefix=/path/where/ThePEG/should/be/installed
make
make check
make install

(~20 minutes)

Generator Herwig++: installation II

Herwig++
Download Herwig++, then

tar xjvf Herwig++-*.tar.bz2
cd Herwig++*
./configure --prefix=/path/where/Herwig++/should/be/installed --with-
thepeg=/path/where/ThePEG/is/installed
make
make check
make install

(~1 h 20 m)

Generator Herwig++: first run
Create a temporary directory to try out Herwig++, and copy all files ending
in .in from the Herwig installation:
mkdir herwigtest
cd herwigtest
cp $HERWIGPATH/share/Herwig++/*.in ./

Run the following command to set up a generator file. This command will be
explained further on.
Herwig++ read LEP.in
This should have generated a file LEP.run. It contains a full example setup of a LEP
event generator. To run it, try
Herwig++ run LEP.run -N50 -d1
The flag -N specifies the number of events to generate. The flag -d1 enables a more
detailed output in LEP.log.
After the run, there should be two new files: LEP.out, which contains an overall
cross section, and LEP.log, containing the detailed record of the requested 50
events. The log format is described in detail in EventRecordFormat.
Re-running the above command will give the same 50 events again unless the seed
of the random number generator is changed by specifying the flag -seed NNNNN.
If you want to modify generator parameters, you'll need to modify LEP.in and
regenerate LEP.run.

https://herwig.hepforge.org/trac/wiki/EventRecordFormat

Generator Herwig++: Matrix elements

In Herwig++ the library of matrix elements for QCD and electroweak processes is
relatively small, certainly with respect to the large range of processes available in its
FORTRAN predecessor. Indeed, the library of Standard Model processes is largely
intended to provide a core of important processes with which to test the program.

For e+e− colliders only four hard processes are included:

• Quark-antiquark production, via interfering photon and Z0 bosons, is implemented in
the MEee2gZ2qq class. No approximation is made regarding the masses of the
particles. This process is essential for us to validate the program using QCD analyses of
LEP data.
• Dilepton pair production, via interfering photon and Z0 bosons, is implemented in
the MEee2gZ2ll class. No approximation is made regarding the masses of the
particles4. This
process is used to check the implementation of spin correlations in τ decays.
• The Bjorken process, Z0h0 production, which is implemented in the MEee2ZH class.
This process is included as it is very similar to the production of Z0h0 and W±h0 in
hadronhadron collisions and uses the same base class for most of the calculation.
• The vector-boson fusion (VBF) processes, e+e− → e+e−h0 and e+e− → νe¯νeh0, are
implemented in the MEee2HiggsVBF class.

Generator Herwig++: Matrix elements II

A much wider range of matrix elements is included in the standalone code for the
simulation of events in hadron colliders:
• Difermion production via s-channel electroweak gauge bosons. The matrix elements for the
production of fermion-antifermion pairs through W± bosons, or interfering photons and Z0
bosons, are implemented in the MEqq2W2ff and MEqq2gZ2ff classes respectively. Only s-channel
electroweak gauge boson diagrams are included for the hadronic modes.
• The production of a Z0 or W± boson in association with a hard jet is simulated using
the MEPP2ZJet or MEPP2WJet class respectively. The decay products of the bosons are
included in the 2 → 3 matrix element and the option of including the photon for Z0
production is supported.
• The 2 → 2 QCD scattering processes are implemented in the MEQCD2to2 class. Currently all the
particles are treated as massless in these processes.
• The matrix element for the production of a heavy quark-antiquark pair (top or bottom quark
pairs), is coded in the MEPP2QQ class. No approximations are made regarding the masses of the
outgoing q¯q pair.
• The MEPP2GammaGamma class implements the matrix element for the production of prompt
photon pairs. In addition to the tree-level q¯q → γγ process the loop-mediated gg → γγ process is
included.
• Direct photon production in association with a jet is simulated using the MEPP2GammaJet class.
As with the QCD 2 → 2 process all of the particles are treated as massless in these processes.
• The production of an s-channel Higgs boson via both gg → h0 and q¯q → h0 is simulated using
the MEPP2Higgs class.
Etc…
Also some NLO ME are available.

Generator Herwig++: Exercise

Use LHC.in, MEPP2QQ matrix element and generate top-antitop pairs.
pp->tt
σ-?
σ(PDF=MRST,CTEQ6L)-?
Make root output and plot θ(top,antitop)

