MC-generators

Lectures and laboratories

Physics of the process

Physics of the process:

"event topology" (basic terminology)

Hard scattering Basic/clue/process

It is **hard**. However there can be simultineously several (semi)hard interactions (multiple interaction).

incoming hadron

Underlying events

Everything excluding the basic (hard) process:

- FSR/ISR (?)
- beam remnants
- pile-up events (several pp-collisions in one bunch crossing)
- multiple interaction (several (semi)hard parton-parton collision in one pp-collision)
- detector noise

«Minimum (zero) bias events» contain the most of underlying events

«Hard» collisions

 $<\mathbf{n}> = \sigma_{nd} / \sigma_{hard}$ n is then assumed to be Poisson-distributed (Multiple interactions)

Diffracrive interactions

Monte-Carlo method

The simplest example of MC method application: calculation of the area of figure

• Cover the figure by a grid, calculate the number of grid cells which are inside and this gives you the area

- Shoot at random at the figure. Count the bullets that hit it. The area of then figure is
- S=(Nhit/Ntotal)*S(rectangle)

One needs to know in advance the boundaries (maximums) within which the figure (function) is enclosed!

Example of MC-method application

• <∆E> if found to 20% less, than it gives direct integration => it is necessary to check a quality of MC-generator

• *m_x* is not specified

Application of MC-methods in HEP Simulation (generation) of Simulation of the processes the basic interaction process in detector (Geant) (Pythia,...) Database of Cross events (the section Geant set of initial px,py,pz,..) detector 16 Pythia

MC-generators

Multi-purpse generators

IsaJet

Special purpose generators

Tauola Photos EvtGen ME generators Alpgen Whizard AcerMC Grappa Amegic++ MadGraph Helac/Phegas CompHep....

> NLO calculators MCFM NLOJET++ BlackHat Rocket CutTools

Testing & Tuning tools MCTester Rivet HepMCAnalysisTool MatchChecker Professor Proffit

NLO generators MC@NLO POWHEG SANC Grace (@NLO)

alpgen generation of hard multiparton processes in hadronic collisions blackmax a black-hole event generator, which simulates the experimental signature of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane-world models with low-scale quantum gravity. cascade full event generator for ep and pp scattering applying kt-factorisation and unintegrated PDFs charybdis production and decay of black holes in hadron collider experiments charybdis2 new version of the black hole event generator hej a High Energy Physics Monte Carlo generator for multi-jet analyses herwig an event generator for Hadron Emission Reactions With Interfering Gluons (including SUSY processes) herwig++ new event generator, written in C++ and built on the experience gained with HERWIG hijing event generator for high energy heavy ion collisions Hydjet event generator simulating jet production, jet quenching and flow effects in ultrarelativistic heavy ion collisions isajet event renerator for pp, pbar p, and e+e- Interactions jimmy a library for multiparton interactions in HERWIG MCatNLO a Fortran package for combining a Monte Carlo event generator with NLO calculations of rates for QCD processes MCFM Monte Carlo for FeMtobarn processes nlojet++ LO and NLO cross section calculation, using the Catani-Seymour dipole subtraction method Phojet general purpose event generator based on Dual Parton Model photos package for QED radiative corrections in decays of resonances photos++ C++ Interface to PHOTOS Pomwig Herwig for diffractive interactions pyquen event generator for simulation of rescattering, radiative and collisional energy loss of hard partons in expanding quark-gluon plasma created in ultrarelativistic heavy ion collisions pythia6 The Lund Monte Carlo - general purpose HEP event generator (written in Fortran) Pythia8 C++ version of pythia6 MC Sherpa an event-generation framework for high-energy particle collisions stagen generator for black hole and graviton production starlight Monte Carlo generator for two-photon and photon-Pomeron interactions between relativistic nuclei and protons. tauola generation of tau decays including spin polarization Toprex parton level generator for top quark production vincia a shower plugin to PYTHIA 8. It is based on the dipole-antenna picture of QCD and focusses on describing quark and gluon radiation with high precision. winhac event generator for single W-boson production in hadron collisions AGILE A Generator Interface Library (& executable) which provide a standard steering interface for Fortran generator codes CLHEP a Class Library for High Energy Physics (No further development is foreseen, except for bug fixes) FastJet a fast and efficient implementation of various jet algorithms JetWeb web-based system for MC event generator validation LHAPDF the Les Houches Accord PDF Interface <u>HepMC</u> a C++ Event Record for Monte Carlo Generators HepPDT particle properties from PDG HepMCAnalysis a tool for generator validation and comparisons HZtool robust model-to-data comparisons MC-tester a universal tool for comparisons of Monte Carlo predictions Professor A tuning tool for Monte Carlo event generators 18 Rivet a toolkit for validation of Monte Carlo event generators (an object oriented C++ replacement for the Fortran HZtool package)

ThePEG a toolkit for High Energy Physics Event Generation

Pythia 6.4

http://home.thep.lu.se/~torbjorn/Pythia.html

http://projects.hepforge.org/pythia6/

PYTHIA history

Pythia vs other generators

Kind	Process	PYT	HER	ISA	_
QCD & related	Soft QCD	*	*	*	_
	Hard QCD	*	*	*	
	Heavy flavour	*	*	*	
Electroweak SM	Single $\gamma^*/Z^0/W^{\pm}$	*	*	*	-
	$(\gamma/\gamma^*/Z^0/W^{\pm}/f/g)^2$	*	*	*	
	Light SM Higgs	*	*	*	
	Heavy SM Higgs	*	*	*	
SUSY BSM	$h^{0}/H^{0}/A^{0}/H^{\pm}$	*	*	*	-
	SUSY	*	*	*	
	R SUSY	*	*	—	
Other BSM	Technicolor	*	_	(*)	-
	New gauge bosons	*	—	—	
	Compositeness	*	—	_	
	Leptoquarks	*	—	—	
	$H^{\pm\pm}$ (from LR-sym.)	*	—	—	~
	Extra dimensions	(*)	(*)	(*)	2

Some shortcomings Pythia

* Processes usually only in lowest nontrivial order

 \Rightarrow need programs that include HO loop corrections to cross sections, alternatively do (p_{\perp}, y) -dependent rescaling by hand?

No multijet topologies

⇒ have to trust shower to get it right, alternatively match to HO (non-loop) ME generators

* Spin correlations often absent or incomplete e.g. top produced unpolarized, while $t \rightarrow bW^+ \rightarrow b\ell^+\nu_\ell$ decay correct \Rightarrow have to use external programs when important

* New physics scenarios appear at rapid pace

 \Rightarrow need to have a bigger class of "one-issue experts" contributing code

always remember that the program does not represent a dead collection of established truths, but rather one of many possible approaches to the problem of multiparticle production in high-energy physics, at the frontline of current research. Be critical! (Manual on Pythia 6.4)

Matrix Elements vs. Parton Showers

- ME : Matrix Elements
 - + systematic expansion in α_{s} ('exact')
 - + powerful for multiparton Born level
 - + flexible phase space cuts
 - loop calculations very tough
 - negative cross section in collinear regions
 - \Rightarrow unpredictive jet/event structure
 - no easy match to hadronization

PS : Parton Showers

- approximate, to LL (or NLL)
- main topology not predetermined
 - \Rightarrow inefficient for exclusive states
- + process-generic \Rightarrow simple multiparton
- + Sudakov form factors/resummation
 - \Rightarrow sensible jet/event structure
- + easy to match to hadronization

3

Physics models implemented in Pythia Parton Shower Approach

(already well covered by B.R. Webber, so brief here) 3 common algorithms, each with its advantages and disadvantages: HERWIG: θ -ordered emissions (ISR & FSR) ARIADNE: p_{\perp} -ordered emissions (FSR primarily) PYTHIA: M^2 , Q^2 -ordered emissions (ISR & FSR) New in PYTHIA 6.3: p_{\perp} -ordered emissions (ISR & FSR)

Matrix Elements and Parton Showers

Marriage desirable! But how?

Much work ongoing \implies no established orthodoxy

Three main areas, in ascending order of complication:

Match to lowest-order nontrivial process — merging
 Combine leading-order multiparton process — vetoed parton showers 24
 Match to next-to-leading order process — MC@NLO

PYTHIA performs merging with generic FSR $a \rightarrow bcg$ ME, in SM: $\gamma^*/Z^0/W^{\pm} \rightarrow q\overline{q}$, $t \rightarrow bW^+$, $H^0 \rightarrow q\overline{q}$, and MSSM: $t \rightarrow bH^+$, $Z^0 \rightarrow \tilde{q}\overline{\tilde{q}}$, $\tilde{q} \rightarrow \tilde{q}'W^+$, $H^0 \rightarrow \tilde{q}\overline{\tilde{q}}$, $\tilde{q} \rightarrow \tilde{q}'H^+$, $\chi \rightarrow q\overline{\tilde{q}}$, $\chi \rightarrow q\overline{\tilde{q}}$, $\tilde{q} \rightarrow q\chi$, $t \rightarrow \tilde{t}\chi$, $\tilde{g} \rightarrow q\overline{\tilde{q}}$, $\tilde{q} \rightarrow q\tilde{g}$, $t \rightarrow \tilde{t}\tilde{g}$

g emission for different colour, spin and parity:

 $R_3^{\text{bl}}(y_c)$: mass effects in Higgs decay:

PYTHIA ISR: only $q\overline{q} \rightarrow \gamma^*/Z^0/W^{\pm}$ and $gg \rightarrow H^0$ (for $m_t \rightarrow \infty$) (but K factor not implemented here)

Physics models implemented in Pythia Multiple Interactions

Consequence of composite nature of hadrons!

Evidence:

- direct observation: AFS, UA1, CDF
- implied by width of multiplicity distribution + jet universality: UA5
- forward-backward correlations: UA5
- pedestal effect: UA1, H1, CDF

One new free parameter: $p_{\perp min}$

 $\frac{1}{2}\sigma_{jet} = \int_{p_{\perp min}^{2}}^{s/4} \frac{d\sigma}{dp_{\perp}^{2}} dp_{\perp}^{2} \quad \Leftarrow \\ f_{p_{\perp min}^{2}} \int_{q_{\perp}^{2}}^{q_{\perp}} \int_{q_{\perp}^{2}}^$

$$\int_{0}^{s/4} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}^2} \frac{p_{\perp}^4}{(p_{\perp 0}^2 + p_{\perp}^2)^2} \mathrm{d}p_{\perp}^2$$

Measure of colour screening length din hadron: $p_{|\min} \langle d \rangle \approx 1 (= \hbar)$

26

Physics models implemented in Pythia Hadronization: Lund String Model

In QCD, for large charge separation, field lines seem to be compressed to tubelike region(s) ⇒ string(s)

by self-interactions among soft gluons in the "vacuum". (Analogy: vortex lines in type II superconductor) Gives linear confinement with string tension: $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV/fm} \iff V(r) \approx \kappa r$ Confirmed e.g. by quenched lattice QCD

Real world (??, or at least unquenched lattice QCD) \implies nonperturbative string breakings $gg \dots \rightarrow q\overline{q}$

Repeat for large system \Rightarrow Lund model

which neglects Coulomb part:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \left|\frac{\mathrm{d}p}{\mathrm{d}x}\right| = \left|\frac{\mathrm{d}E}{\mathrm{d}t}\right| = \left|\frac{\mathrm{d}p}{\mathrm{d}t}\right| = \kappa$$

Motion of quarks and antiquarks in a $q\overline{q}$ system:

gives simple but powerful picture of hadron production (with extensions to massive quarks, baryons, ...)

The Lund gluon picture — the most characteristic feature:

Gluon = kink on string, carrying energy and momentum. Force ratio gluon/ quark = 2, cf. QCD $N_C/C_F = 9/4$

Few parameters to describe energy-momentum structure!

• Many parameters to describe flavour composition!

HERWIG cluster fragmentation: the opposite

Numerous and detailed tests at LEP favour string picture ... but much uncertain when moving to hadron colliders.

Physics models implemented in Pythia Summary (so far)

★ Big selection of subprocesses ★ but often not enough, so

 \star Standard interface for including external processes \star

★ State-of-the-art parton showers ★

... but much to be done on ME + PS matching

★ The trend-setting model for underlying events ★

* The most realistic and successful model for hadronization *

★ Extensive documentation: 450 pp manual + update notes ★

* Webpage http://www.thep.lu.se/~torbjorn/Pythia.html *

Nobody ever got fired for using PYTHIA! (?)

but also

Nobody is perfect!

So, whichever is your favourite generator, you always need cross-checks!

[...] The Monte Carlo simulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good. But it often happens that the physics simulations provided by the Monte Carlo generators carry the authority of data itself. They look like data and feel like data, and if one is not careful they are accepted as if they were data.

[...] I am prepared to believe that the computer-literate generation (of which I am a little too old to be a member) is in principle no less competent and in fact benefits relative to us in the older generation by having these marvelous tools. They do allow one to look at, indeed visualize, the problems in new ways. But I also fear a kind of "terminal illness", perhaps traceable to the influence of television at an early age. There the way one learns is simply to passively stare into a screen and wait for the truth to be delivered. A number of physicists nowadays seem to do just this.

J.D. Bjorken

from a talk given at the 75th anniversary celebration of the Max-Planck Institute of Physics, Munich, Germany, December 10th, 1992. As quoted in: Beam Line, Winter 1992, Vol. 22, No. 4

Nomenclature

KF (according to PDG) and KC codes

KF	Name	Printed	KF	Name	Printed	KI	7	Name	Printed	KF	Name	Printed
1	d	d	11	e ⁻	e-	21	L	g	g	31		
2	u	u	12	$ u_{ m e} $	nu_e	22	2	γ	gamma	32	Z'^0	Z'O
3	s	s	13	μ^{-}	mu-	23	3	\mathbf{Z}^{0}	ZO	33	Z''^0	Z"0
4	с	с	14	$ u_{\mu}$	nu_mu	24	1	W^+	W+	34	W'^+	W'+
5	b	b	15	τ^{-}	tau-	25	5	h^0	h0	35	H^0	HO
6	t	t	16	$ u_{ au}$	nu_tau	26	3			36	A^0	AO
7	ь′	b'	17	au'	tau'	27	7			37	H^+	H+
8	t'	ť'	18	$\nu'_{ au}$	nu'_tau	28	3			38		
9			19			29)			39	G	Graviton
10			20			30)			40		
										41	\mathbf{R}^{0}	RO
										42	L_Q	LQ

$$KF = KCHG(KC,4)$$

33

KC = PYCOMP(KF)

Nomenclature

KF (according to PDG) and KC codes

Name

 \tilde{d}_L

 $\tilde{\mathbf{u}}_L$

 $\tilde{\mathbf{s}}_L$

Printed

 $\sim d_L$

 \sim u_L

 $\sim s_L$

$\mathbf{KF} = 1000i + 100j + 10k + 2s + 1$

KF	Name	Printed	KF	Name	Printed	
			1114	Δ^{-}	Delta-	
2112	n	nO	2114	Δ^0	Delta0	
2212	р	p+	2214	Δ^+	Delta+	
			2224	Δ^{++}	Delta++	
3112	Σ^{-}	Sigma-	3114	Σ^{*-}	Sigma*-	
3122	Λ^0	Lambda0				
3212	Σ^0	Sigma0	3214	Σ^{*0}	Sigma*0	
3222	Σ^+	Sigma+	3224	Σ^{*+}	Sigma*+	
3312	Ξ^-	Xi-	3314	Ξ^{*-}	Xi*-	
3322	Ξ^0	XiO	3324	Ξ^{*0}	Xi*O	
			3334	Ω^{-}	Omega-	
4112	$\Sigma_{\rm c}^0$	Sigma_c0	4114	$\Sigma_{\rm c}^{*0}$	Sigma*_c0	
4122	$\Lambda_{ m c}^+$	Lambda_c+				
4212	$\Sigma_{\rm c}^+$	Sigma_c+	4214	$\Sigma_{\rm c}^{*+}$	Sigma*_c+	
4222	$\Sigma_{\rm c}^{++}$	Sigma_c++	4224	Σ_{c}^{*++}	Sigma*_c++	
4132	$\Xi_{\rm c}^0$	Xi_c0				
4312	$\Xi_{\rm c}^{\prime 0}$	Xi'_c0	4314	$\Xi_{ m c}^{*0}$	Xi*_c0	
4232	$\Xi_{\rm c}^+$	Xi_c+				
4322	$\Xi_{\rm c}^{\prime+}$	Xi'_c+	4324	$\Xi_{\rm c}^{*+}$	Xi*_c+	
4332	$\Omega_{ m c}^0$	Omega_c0	4334	$\Omega_{ m c}^{*0}$	Omega*_c0	
5112	$\Sigma_{\rm b}^{-}$	Sigma_b-	5114	$\Sigma_{\rm b}^{*-}$	Sigma*_b-	KF
5122	$\Lambda_{ m b}^0$	Lambda_b0				1000001
5212	$\Sigma_{\rm b}^0$	Sigma_b0	5214	$\Sigma_{\rm b}^{*0}$	Sigma*_b0	1000002
5222	$\Sigma_{\rm b}^+$	Sigma_b+	5224	$\Sigma_{\rm b}^{*+}$	Sigma*_b+	100003

${\rm KF} = 1000i + 100j + 2s + 1$

KF	Name	Printed	KF	Name	Printed
			1103	dd_1	dd_1
2101	ud_0	ud_0	2103	ud_1	ud_1
			2203	uu_1	uu_1
3101	sd_0	sd_0	3103	sd_1	sd_1
3201	su_0	su_0	3203	su_1	su_1
			3303	\mathbf{ss}_1	ss_1

 $KF = \{100\max(i,j) + 10\min(i,j) + 2s + 1\} \operatorname{sign}(i-j) (-1)^{\max(i,j)}$

	KF	Name	Printed	KF	Name	Printed
	211	π^+	pi+	213	ρ^+	rho+
	311	\mathbf{K}^{0}	KO	313	K^{*0}	K*0
	321	K^+	K+	323	K^{*+}	K*+
	411	D^+	D+	413	D^{*+}	D*+
	421	\mathbf{D}^0	DO	423	D^{*0}	D*0
	431	D_s^+	D_s+	433	D_s^{*+}	D*_s+
	511	B^{0}	BO	513	B^{*0}	B*0
	521	B^+	B+	523	B^{*+}	B*+
	531	$\rm B_s^0$	B_sO	533	$\mathrm{B_{s}^{*0}}$	B*_s0
	541	$\rm B_c^+$	B_c+	543	B_{c}^{*+}	B*_c+
	111	π^0	pi0	113	$ ho^0$	rho0
п	221	η	eta	223	ω	omega
-	331	η'	eta'	333	ϕ	phi
	441	$\eta_{ m c}$	eta_c	443	J/ψ	J/psi
	551	$\eta_{ m b}$	eta_b	553	Υ	Upsilon
	130	${ m K}^0_{ m L}$	K_LO			
	310	$ m K_S^0$	K_SO			

Output of the codes

C...Programme PyList.f C...EXTERNAL statement links PYDATA on most machines. EXTERNAL PYDATA

Processes in Pythia (ISUB)

No.	Subprocess			
Hard	QCD processes:			
11	$f_if_j\tof_if_j$			
12	$f_i \overline{f}_i \rightarrow f_k \overline{f}_k$			
13	$f_i \overline{f}_i \rightarrow gg$			
28	$f_ig\tof_ig$			
53	$gg \rightarrow f_k \overline{f}_k$			
68	$gg \to gg$			
Soft (QCD processes:			
91	elastic scattering			
92	single diffraction (XB)			
93	single diffraction (AX)			
94	double diffraction			
95	low- p_{\perp} production			
Open heavy flavour:				
(also	fourth generation)			
81	$f_i \overline{f}_i \rightarrow Q_k \overline{Q}_k$			
82	$gg ightarrow Q_k \overline{Q}_k$			
83	$q_i f_i \rightarrow Q_k f_l$			

No.	Subprocess
84	$g\gamma ightarrow Q_k \overline{Q}_k$
85	$\gamma\gamma \to F_k\overline{F}_k$
Close	d heavy flavour:
86	${\tt gg} ightarrow {\sf J}/\psi{\tt g}$
87	${\tt gg} ightarrow \chi_{ m Oc} {\tt g}$
88	$gg ightarrow \chi_{1c}g$
89	$gg ightarrow \chi_{2c}g$
104	$ ext{gg} o \chi_{ ext{Oc}}$
105	${\tt gg} ightarrow \chi_{2{\tt c}}$
106	${\sf gg} ightarrow {\sf J}/\psi\gamma$
107	${ m g}\gamma ightarrow { m J}/\psi { m g}$
108	$\gamma\gamma ightarrow {\sf J}/\psi\gamma$
W/Z	production:
1	$f_i \overline{f}_i ightarrow \gamma^*/Z^0$
2	$f_i\overline{f}_j\toW^\pm$
22	$f_i \overline{f}_i \rightarrow Z^0 Z^0$
23	$f_i\overline{f}_j\to Z^0W^\pm$
25	$f_i \overline{f}_i \rightarrow W^+W^-$
15	$f_i \overline{f}_i \rightarrow g Z^0$

No.	Subprocess					
16	$f_i \overline{f}_j ightarrow gW^{\pm}$					
30	$f_ig \to f_iZ^0$					
31	$f_ig\tof_kW^\pm$					
19	$f_i \overline{f}_i \rightarrow \gamma Z^0$					
20	$f_i \overline{f}_j \rightarrow \gamma W^{\pm}$					
35	$f_i\gamma\tof_iZ^0$					
36	$f_i\gamma\tof_kW^\pm$					
69	$\gamma\gamma \rightarrow W^+W^-$					
70	$\gamma {\rm W}^{\pm} \rightarrow {\rm Z}^{\rm 0} {\rm W}^{\pm}$					
Prom	Prompt photons:					
14	$f_i \overline{f}_i ightarrow g \gamma$					
18	$f_i \overline{f}_i ightarrow \gamma \gamma$					
29	$f_ig\tof_i\gamma$					
114	$gg ightarrow \gamma\gamma$					
115	$gg ightarrow g\gamma$					
Deeply Inel. Scatt .:						
10	$f_if_j\tof_kf_l$					
99	$\gamma^* \mathbf{q} ightarrow \mathbf{q}$					
No.	Subprocess					
-------	--	--	--	--	--	--
Photo	Photon-induced:					
33	$f_i\gamma\tof_ig$					
34	$f_i\gamma\tof_i\gamma$					
54	$g\gamma \rightarrow f_k \overline{f}_k$					
58	$\gamma\gamma ightarrow f_k\overline{f}_k$					
131	$f_i\gamma^*_T\to f_ig$					
132	$f_i\gamma^*_L \to f_ig$					
133	$f_i\gamma_T^*\to f_i\gamma$					
134	$f_i \gamma^*_L \to f_i \gamma$					
135	$g\gamma^*_T \rightarrow f_i \overline{f}_i$					
136	$g\gamma^*_L \rightarrow f_i \overline{f}_i$					
137	$\gamma^*_{T}\gamma^*_{T} \to f_i\overline{f}_i$					
138	$\gamma^*_T \gamma^*_L \to f_i \overline{f}_i$					
139	$\gamma^*_L \gamma^*_T \to f_i \overline{f}_i$					
140	$\gamma^*_L \gamma^*_L \to f_i \overline{f}_i$					
80	${\sf q}_i\gamma ightarrow {\sf q}_k\pi^\pm$					
Light	SM Higgs:					
3	$f_i\overline{f}_i \to h^0$					
24	$f_i\overline{f}_i\to Z^0h^0$					
26	$f_i \overline{f}_i \rightarrow W^{\pm} h^0$					

No.	Subprocess
32	$f_ig \to f_ih^0$
102	$gg \to h^0$
103	$\gamma\gamma ightarrow {\sf h}^{\sf o}$
110	$f_i \overline{f}_i \rightarrow \gamma h^0$
111	$f_i \overline{f}_i \rightarrow gh^0$
112	$f_ig \to f_ih^0$
113	$gg \to gh^0$
121	$gg ightarrow Q_k \overline{Q}_k h^0$
122	$q_i \overline{q}_i ightarrow Q_k \overline{Q}_k h^0$
123	$f_i f_j \to f_i f_j h^0$
124	$f_i f_j \to f_k f_l h^0$
Heav	y SM Higgs:
5	$Z^{o}Z^{o} \to h^{o}$
8	$W^+W^- \rightarrow h^0$
71	$Z^0_L Z^0_L \to Z^0_L Z^0_L$
72	$Z^0_L Z^0_L \to W^+_L W^L$
73	$Z^0_L W^\pm_L \to Z^0_L W^\pm_L$
76	$W^+_L W^L \to Z^0_L Z^0_L$
77	$W^\pm_L W^\pm_L \to W^\pm_L W^\pm_L$

No.	Subprocess
BSM	Neutral Higgs:
151	$f_i \overline{f}_i \rightarrow H^0$
152	$gg \to H^0$
153	$\gamma\gamma ightarrow {\rm H^o}$
171	$f_i\overline{f}_i\to Z^0H^0$
172	$f_i \overline{f}_j ightarrow W^{\pm} H^0$
173	$f_i f_j \to f_i f_j H^0$
174	$f_i f_j \rightarrow f_k f_l H^0$
181	$gg \rightarrow Q_k \overline{Q}_k H^0$
182	$q_i \overline{q}_i ightarrow Q_k \overline{Q}_k H^0$
183	$f_i \overline{f}_i ightarrow gH^0$
184	$f_ig \to f_i H^0$
185	$gg \rightarrow gH^0$
156	$f_i \overline{f}_i \rightarrow A^0$
157	$gg \to A^0$
158	$\gamma\gamma ightarrow {\sf A}^{\sf 0}$
176	$f_i\overline{f}_i\toZ^0A^0$
177	$f_i\overline{f}_j\to W^\pm A^0$
178	$f_i f_j \to f_i f_j A^0$
179	$f_i f_j \rightarrow f_k f_l A^0$

37

Subprocess No. $gg \rightarrow Q_k \overline{Q}_k A^0$ $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k A^0$ $f_i \overline{f}_i \rightarrow g A^0$ $f_i g \rightarrow f_i A^0$ $gg \rightarrow gA^0$ Charged Higgs: $f_i \overline{f}_j \rightarrow H^+$ $f_i g \rightarrow f_k H^+$ Higgs pairs: $f_i \overline{f}_j \rightarrow H^{\pm} h^0$ $f_i \overline{f}_j \rightarrow H^{\pm} H^0$ $f_i \overline{f}_i \rightarrow A^0 h^0$ $f_i \overline{f}_i \rightarrow A^0 H^0$ $f_i \overline{f}_i \rightarrow H^+ H^-$ New gauge bosons: $f_i \overline{f}_i \rightarrow \gamma/Z^0/Z'^0$ $f_i \overline{f}_j \rightarrow W'^+$ $f_i \overline{f}_j \rightarrow R$

No.	Subprocess				
Technicolor:					
149	$gg ightarrow \eta_{tc}$				
191	$f_i \overline{f}_i \rightarrow ho_{tc}^0$				
192	$f_i \overline{f}_j \rightarrow ho_{tc}^+$				
193	$f_i \overline{f}_i \rightarrow \omega_{tc}^0$				
194	$f_i \overline{f}_i \rightarrow f_k \overline{f}_k$				
195	$f_i \overline{f}_j \rightarrow f_k \overline{f}_l$				
361	$f_i \overline{f}_i \rightarrow W^+_L W^L$				
362	$f_i \overline{f}_i \rightarrow W_L^{\pm} \pi_{tc}^{\mp}$				
363	$f_i \overline{f}_i \rightarrow \pi_{tc}^+ \pi_{tc}^-$				
364	$f_i \overline{f}_i \rightarrow \gamma \pi^0_{tc}$				
365	$f_i \overline{f}_i \rightarrow \gamma {\pi'}_{tc}^0$				
366	$f_i \overline{f}_i \rightarrow Z^0 \pi^0_{tc}$				
367	$f_i \overline{f}_i \rightarrow Z^0 {\pi'}_{tc}^0$				
368	$f_i \overline{f}_i \rightarrow W^{\pm} \pi_{tc}^{\mp}$				
370	$f_i\overline{f}_j \to W^\pm_L Z^0_L$				
371	$f_i\overline{f}_j \to W^\pm_L \pi^0_{tc}$				
372	$f_i \overline{f}_j \rightarrow \pi_{tc}^{\pm} Z_L^0$				
373	$f_i \overline{f}_j \rightarrow \pi_{tc}^{\pm} \pi_{tc}^0$				
374	$f_i \overline{f}_j \rightarrow \gamma \pi_{tc}^{\pm}$				

No.	Subprocess	
375	$f_i \overline{f}_j \rightarrow Z^0 \pi_{tc}^{\pm}$	
376	$f_i \overline{f}_j \rightarrow W^{\pm} \pi^0_{tc}$	
377	$f_i \overline{f}_j \rightarrow W^{\pm} {\pi'}_{tc}^0$	
381	$q_iq_j o q_iq_j$	
382	$q_i \overline{q}_i o q_k \overline{q}_k$	
383	$q_i \overline{q}_i ightarrow gg$	
384	$f_ig\tof_ig$	
385	$gg \rightarrow q_k \overline{q}_k$	
386	$gg \to gg$	
387	$f_i \overline{f}_i ightarrow Q_k \overline{Q}_k$	
388	$gg \to Q_k \overline{Q}_k$	
Comp	oositeness:	
146	$e\gamma \to e^*$	
147	$dg \to d^{\ast}$	
148	$ug \to u^*$	
167	$q_iq_j\tod^*q_k$	
168	$q_iq_j\tou^*q_k$	
169	$q_i \overline{q}_i \rightarrow e^\pm e^{*\mp}$	
165	$f_i\overline{f}_i(\to\gamma^*/Z^0)\tof_k\overline{f}_k$	
166	$f_i\overline{f}_j(\toW^\pm)\tof_k\overline{f}_l$	⁸

No.	Subprocess				
Leptoquarks:					
145	$q_i\ell_j\toL_Q$				
162	$qg \to \ell L_Q$				
163	$gg \rightarrow L_Q \overline{L}_Q$				
164	$q_i \overline{q}_i \rightarrow L_Q \overline{L}_Q$				
Left-r	ight symmetry:				
341	$\ell_i \ell_j \to H_L^{\pm\pm}$				
342	$\ell_i \ell_j \to H_R^{\pm\pm}$				
343	$\ell_i^\pm \gamma ightarrow H_L^{\pm\pm} e^\mp$				
344	$\ell_i^\pm \gamma ightarrow H_R^{\pm\pm} e^\mp$				
345	$\ell_i^\pm\gamma\toH_L^{\pm\pm}\mu^\mp$				
346	$\ell_i^\pm\gamma\toH_R^{\pm\pm}\mu^\mp$				
347	$\ell_i^\pm\gamma\toH_L^{\pm\pm}\tau^\mp$				
348	$\ell_i^\pm\gamma\toH_R^{\pm\pm}\tau^\mp$				
349	$f_i\overline{f}_i\toH_L^{++}H_L^{}$				
350	$f_i \overline{f}_i \rightarrow H_R^{++} H_R^{}$				
351	$f_i f_j \rightarrow f_k f_l H_L^{\pm\pm}$				
352	$f_if_j\tof_kf_lH_R^{\pm\pm}$				
353	$f_i \overline{f}_i \rightarrow Z_R^0$				
354	$f_i \overline{f}_j \rightarrow W_R^{\pm}$				

No.	Subprocess
Extra	Dimensions:
391	$f\overline{f} \to G^*$
392	$gg \to G^\ast$
393	$q\overline{q} \to gG^*$
394	$qg \to qG^\ast$
395	$gg \to gG^*$
SUSY	<u>.</u>
201	$f_i \overline{f}_i \rightarrow \tilde{e}_L \tilde{e}_L^*$
202	$f_i \overline{f}_i \rightarrow \tilde{e}_R \tilde{e}_R^*$
203	$f_i \overline{f}_i \rightarrow \tilde{e}_L \tilde{e}_R^* +$
204	$f_i \overline{f}_i \rightarrow \tilde{\mu}_L \tilde{\mu}_L^*$
205	$f_i \overline{f}_i \rightarrow \widetilde{\mu}_R \widetilde{\mu}_R^*$
206	$f_i \overline{f}_i \rightarrow \tilde{\mu}_L \tilde{\mu}_R^* +$
207	$f_i \overline{f}_i \rightarrow \widetilde{\tau}_1 \widetilde{\tau}_1^*$
208	$f_i \overline{f}_i \rightarrow \widetilde{\tau}_2 \widetilde{\tau}_2^*$
209	$f_i \overline{f}_i \rightarrow \tilde{\tau}_1 \tilde{\tau}_2^* +$
210	$f_i \overline{f}_j \rightarrow \tilde{\ell}_L \tilde{\nu}_\ell^* +$
211	$f_i \overline{f}_j \rightarrow \tilde{\tau}_1 \tilde{\nu}_{\tau}^* +$
212	$f_i \overline{f}_j \rightarrow \tilde{\tau}_2 \tilde{\nu}_{\tau}^* +$
213	$f_i \overline{f}_i \rightarrow \widetilde{\nu_\ell} \widetilde{\nu_\ell}^*$

No.	Subprocess					
214	$f_i \overline{f}_i \rightarrow \tilde{\nu}_{\tau} \tilde{\nu}_{\tau}^*$					
216	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_1$					
217	$f_i \overline{f}_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_2$					
218	$f_i \overline{f}_i \rightarrow \tilde{\chi}_3 \tilde{\chi}_3$					
219	$f_i \overline{f}_i \rightarrow \tilde{\chi}_4 \tilde{\chi}_4$					
220	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_2$					
221	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_3$					
222	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_4$					
223	$f_i \overline{f}_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_3$					
224	$f_i \overline{f}_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_4$					
225	$f_i \overline{f}_i \rightarrow \tilde{\chi}_3 \tilde{\chi}_4$					
226	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$					
227	$f_i \overline{f}_i \rightarrow \tilde{\chi}_2^{\pm} \tilde{\chi}_2^{\mp}$					
228	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$					
229	$f_i \overline{f}_j \rightarrow \tilde{\chi}_1 \tilde{\chi}_1^{\pm}$					
230	$f_i \overline{f}_j \rightarrow \tilde{\chi}_2 \tilde{\chi}_1^{\pm}$					
231	$f_i \overline{f}_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_1^{\pm}$					
232	$f_i \overline{f}_j \rightarrow \tilde{\chi}_4 \tilde{\chi}_1^{\pm}$					
233	$f_i \overline{f}_j \rightarrow \tilde{\chi}_1 \tilde{\chi}_2^{\pm}$					
234	$f_i \overline{f}_j \rightarrow \tilde{\chi}_2 \tilde{\chi}_2^{\pm}$					

No.	Subprocess
235	$f_i \overline{f}_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_2^\pm$
236	$f_i \overline{f}_j \rightarrow \tilde{\chi}_4 \tilde{\chi}_2^\pm$
237	$f_i \overline{f}_i o \tilde{g} \tilde{\chi}_1$
238	$f_i \overline{f}_i ightarrow \widetilde{g} \widetilde{\chi}_2$
239	$f_i\overline{f}_i ightarrow \widetilde{g}\widetilde{\chi}_3$
240	$f_i \overline{f}_i ightarrow \widetilde{g} \widetilde{\chi}_4$
241	$f_i \overline{f}_j \rightarrow \tilde{g} \tilde{\chi}_1^{\pm}$
242	$f_i \overline{f}_j \rightarrow \tilde{g} \tilde{\chi}_2^{\pm}$
243	$f_i\overline{f}_i\to \widetilde{g}\widetilde{g}$
244	gg → ĝĝ
246	$f_ig \to \tilde{q}_{\mathit{iL}}\tilde{\chi}_1$
247	$f_ig \to \tilde{q}_{i\it R}\tilde{\chi}_1$
248	$f_ig \to \widetilde{q}_{iL}\widetilde{\chi}_2$
249	$f_ig \to \widetilde{q}_{\mathit{iR}}\widetilde{\chi}_2$
250	$f_i g ightarrow \widetilde{q}_{iL} \widetilde{\chi}_3$
251	$f_ig \to \tilde{q}_{i\it R}\tilde{\chi}_3$
252	$f_ig \to \tilde{q}_{iL}\tilde{\chi}_4$
253	$f_ig \to \tilde{q}_{iR}\tilde{\chi}_4$

No.	Subprocess
254	$f_i g ightarrow { ilde q}_{jL} { ilde \chi}_1^\pm$
256	$f_i g \rightarrow \tilde{q}_{jL} \tilde{\chi}_2^{\pm}$
258	$f_ig \to \widetilde{q}_{iL}\widetilde{g}$
259	$f_ig \to \widetilde{q}_{i\mathit{R}}\widetilde{g}$
261	$f_i\overline{f}_i\to \widetilde{t}_1\widetilde{t}_1^*$
262	$f_i\overline{f}_i\to \widetilde{t}_2\widetilde{t}_2^*$
263	$f_i \overline{f}_i \rightarrow \tilde{t}_1 \tilde{t}_2^* +$
264	$gg \to \tilde{t}_1 \tilde{t}_1^*$
265	$gg \to \tilde{t}_2 \tilde{t}_2^*$
271	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}$
272	$f_i f_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}$
273	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jR} +$
274	$f_i \overline{f}_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}^*$
275	$f_i \overline{f}_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}^*$
276	$f_i \overline{f}_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jR}^* +$
277	$f_i \overline{f}_i \rightarrow \tilde{q}_{jL} \tilde{q}_{jL}^*$
278	$f_i \overline{f}_i \rightarrow \tilde{q}_{jR} \tilde{q}_{jR}^*$
279	$gg ightarrow ilde{q}_{iL} ilde{q}_{iL}^*$

No.	Subprocess
280	$gg ightarrow ilde{q}_{iR} ilde{q}_{iR}^*$
281	$bq_i ightarrow \tilde{b}_1 \tilde{q}_{iL}$
282	$bq_i ightarrow \widetilde{b}_2 \widetilde{q}_{iR}$
283	$bq_i \rightarrow \tilde{b}_1 \tilde{q}_{iR} + \tilde{b}_2 \tilde{q}_{iL}$
284	$b\overline{q}_i o \widetilde{b}_1 \widetilde{q}_i^* L$
285	$b\overline{q}_i o \widetilde{b}_2 \widetilde{q}_i^*{}_R$
286	$b\overline{q}_i \rightarrow \tilde{b}_1 \tilde{q}_{iR}^* + \tilde{b}_2 \tilde{q}_{iL}^*$
287	$f_i \overline{f}_i \rightarrow \tilde{b}_1 \tilde{b}_1^*$
288	$f_i \overline{f}_i \rightarrow \overline{b}_2 \overline{b}_2^*$
289	$gg \to \widetilde{b}_1 \widetilde{b}_1^*$
290	$gg \to \tilde{b}_2 \tilde{b}_2^*$
291	$bb \to \tilde{b}_1 \tilde{b}_1$
292	$bb \to \tilde{b}_2 \tilde{b}_2$
293	$bb \to \tilde{b}_1 \tilde{b}_2$
294	$bg \to \widetilde{b}_1 \widetilde{g}$
295	$bg \to \widetilde{b}_2 \widetilde{g}$
296	$b\overline{b} \to \tilde{b}_1 \tilde{b}_2^* +$

Process setup

PYINIT + MSEL +/ MSUB +/ MSTP +/ MDME +/ ...

MSEL lets (=0) to make choosing process by "hands" (MSUB +/ MSTP)

Some other parameters

MSTP – see manual

MSTP(1)=4 – 4-th generation install

MSEL=4 – switching on of 4-th gen.

MSUB(81)=1

MSUB(82)=1 for quarks of 4-th gen.

MSTP(51) – PDF (D=7 – CTEQ5L)

PMAS(KC,1) – mass of KC-particle

MDCY(KC,1)=0,1 – switching off/on decay (for modes (IDC) switched on with MDME at branching BRAT(IDC)), **excluding resonances**

PMAS(KC,2)/ PMAS(KC,2) – width/lifetime (GeV/mm) – does not work for resonances

MWID(KC)=0,1 - switching off/on resonance decay

CKIN(1/2) – min/max sqrt(s)

 $CKIN(3/4) - min/max pT (for 2 \rightarrow 2)$

CKIN(13/14) – min/max η(D=+-40)

Common parameters of generated event

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

N – the number of products in one event

K(1-4000,1-5)

K(I,1) - status of i-th (intermediate) product (see manual)

K(I,2) - KF-code of i-th product (at i-th line)

K(I,3) - number of line of the parent (if any)

K(I,4/5) - number of 1st/last daughter (if any)

P(1-4000,1-5)

P(I,1-5) – px,py,pz,E,m of i-th product

V(1-4000,1-5)

V(I,1-5) - x,y,z,t,lifetime of i-th product

Some functions of Pythia

CALL PYEVNT – generation of the given event => all the data arrays are filled out: N, K(I,1-5), P(I,1-5), ...

PYEDIT(1) – leave only stable (long living) products – i.e. to decay everything what decays quickly

PYLIST(2) – printing out of event

PYSTAT (1) – printing out of cross section

PYHIST – drawing of histogram/ CALL PYFILL(1,P(I,4),1D0) – filling/ PYBOOK(1,"Spectrum",100,0D0,100D0) – booking

CALL PYEXEC – fulfill the chosen options

Output of Pythia (1)

http://home.fnal.gov/~mrenna/041207_pythia_tutorial/03_041207_pythia_tutorial_PS_2_sample.out.txt

Event listing (standard)

I particle/j	et K(I,1)	K(I,2)	K(I,3)	K(I,4)	K(I,5)) P(I,1)	P(I,2)	P(I,3)	P(I,4)	P(I,5)	
1 !p+! 2 !p+!	21 21	2212 2212	0 0	0 0	0 0	0.00000 0.00000	0.00000 0.00000	3499.99987 -3499.99987	3500.00000 3500.00000	0.93827	
3 !g! 4 !u! 5 !ubar! 6 !u! 7 !Z0! 8 !mu-! 9 !mu+!	21 21 21 21 21 21 21 21 21	21 2 -2 2 23 13 -13	1 2 3 4 0 7 7	0 0 0 0 0 0 0	0 0 0 0 0 0 0	-1.52733 0.38909 -0.84004 0.20126 -0.63878 -0.55408 -0.08470	1.37843 -0.48905 -2.69293 -0.25296 -2.94589 -2.42260 -0.52330	184.46649 -224.85248 -100.17106 -116.30618 -216.47723 -79.10463 -137.37260	184.47796 224.85335 100.21077 116.30663 216.51739 79.14373 137.37366	0.00000 0.00000 0.00000 0.00000 2.88154 0.10566 0.10566	Структура корневого процесса
======================================	11 1 A 12 I 12 V 11	23 13 -13 2 21 2203	7 8 9 3 3 1	11 0 28 28 28 28	12 0 28 28 28 28	-0.63878 -0.55408 -0.08470 0.76118 -1.97802 1.02216	-2.94589 -2.42260 -0.52330 2.14258 2.50209 -0.90376	-216.47723 -79.10463 -137.37260 -4.98506 183.83048 2672.0752	216.51739 79.14373 137.37366 5.48906 183.85815 4 2672.0757	2.88154 0.10566 0.10566 0.33000 0.00000 0.77133	-=

Output of Pythia (2)

MSTP(125)=0 (D=1)

see p.86 of manual

Event listing (standard)

I	particle/j	et	K(I,1)	K(I,2)	K(I,3)	K(I,4)	K(l,5) P(I,1)	P(l,2)	P(I,3)	P(I,4)	P(I,5)
1	(Z0)		11	23	0	2	3	-0.63878	-2	.94589	-216.47723	216.51739	2.88154
2	mu-		1	13	0	0	0	-0.55408	-2	42260	-79.10463	79.14373	0.10566
3	mu+		1	-13	0	0	0	-0.08470	-0	.52330	-137.37260	137.37366	0.10566
4	(u)	Α	12	2	0	19	19	0.7611	8 2	2.14258	-4.98506	5.48906	0.33000
5	(g)	I	12	21	0	19	19	-1.9780	2	2.50209	183.83048	183.85815	0.00000
6	(uu_1)	V	11	2203	0	19	19	1.0221	6 -0	0.90376	2672.07524	2672.07570	0.77133
7	(d)	Α	12	1	0	38	38	0.5051	7 -0).47468	6.86331	6.90611	0.33000
8	(g)	I	12	21	0	38	38	0.1082	3 -	0.62221	-2.75806	2.82944	0.00000
9	(g)	I	12	21	0	38	38	0.6091	5 -	0.18717	0.00388	0.63727	0.00000
10	(g)	I	12	21	0	38	38	-9.0303	4 -	3.15734	-24.98398	26.75286	0.00000
11	(g)	I	12	21	0	38	38	-0.2272	4	0.10068	1.80241	1.81946	0.00000
12	(g)	I	12	21	0	38	38	-4.2947	5	2.36977	59.45086	59.65287	0.00000
13	(g)	I	12	21	0	38	38	-3.1002	0 -	1.79857	526.70190	526.71409	0.00000
14	(g)	I	12	21	0	38	38	0.2272	4 -	0.10068	15.51683	15.51882	0.00000
15	(g)	I	12	21	0	38	38	3.1002	0 [·]	1.79857	27.66076	27.89200	0.00000
16	(g)	I	12	21	0	38	38	4.2947	5 -2	2.36977	2.90457	5.70064	0.00000
17	(g)	I	12	21	0	38	38	9.0303	4 :	3.15734	-1525.02585	1525.05586	0.00000
18	(ud_0)	V	11	2101	0	38	38	-0.3890	9 (0.48905	-1722.58005	1722.58027	0.57933
=== 19	(string)		_ 	9 2	_	_ 20	37	-0.1946	8 3	_ 3.74091	2850.92066	 2861.42291	244.90488
20	(rho0)		11	113	19	96	97	0.5819	3 1	.70730	-3.37863	3.92555	0.86099
21	p+		1	2212	19	0	0	-0.0207	2 -(0.13075	0.04995	0.94888	0.93827
22	nbar0		1 -	2112	19	0	0	-0.1774	5 (0.63069	0.16922	1.15788	0.93957

Common blocks in fortran 77

COMMON-blocks are used instead of global variables:

In the main programme:

common /coeff/ alpha, beta

In any subroutine, used the same variables:

common /coeff/ alpha, beta

The most full declaration of the Pythia common-blocks is in http://projects.hepforge.org/pythia6/examples/main60.f

Tasks

1a) $pp \rightarrow \gamma \rightarrow \mu \mu$ 16) pp $\rightarrow \gamma \rightarrow \mu \mu (\mu \rightarrow e_{VV})$ 1в) pp $\rightarrow \gamma \rightarrow \mu \mu$ 2а,б,в) рр→ү+Z→µµ За,б,в) рр**→**₩→µv 4) $pp \rightarrow W \rightarrow e_V$ 5) $pp \rightarrow tt \rightarrow ...$ 6) $pp \rightarrow f_4 f_4$ 7) ee→…

σ, dN_µ/dE σ, dN_e/dE σ, dN_{µ(γ)}/dE

σ, dN_{e(W)}/dE vs dN_{e(tot)}/dE σ(PDF), dN_µ/dE σ, dN_{f4}/dE

Example $pp \rightarrow Z \rightarrow \mu \mu$ (1)

PROGRAM Z-mumu

- C...All real arithmetic in double precision. IMPLICIT DOUBLE PRECISION(A-H, O-Z)
- C...Three Pythia functions return integers, so need declaring. INTEGER PYK,PYCHGE,PYCOMP

DIMENSION Dmu(0:3500)

- C...EXTERNAL statement links PYDATA on most machines. EXTERNAL PYDATA
- C...Commonblocks.
- C...The event record. COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)
- C...Parameters.
- C...Particle properties + some flavour parameters. COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)
- C...Decay information.
- C...Note that dimensions below grew from 4000 to 8000 in Pythia 6.2! COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)
- C...Selection of hard scattering subprocesses. COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)
- C...Parameters. COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Example **pp→Z→**μμ **(2)** t

Сþ	particle:	е	mu	ga	mma	Z0		t			
С	KF:	11	13	2	2	23	6	5			
С	KC:	11	13	2	22	23	6	6			
C C C	process: ISUB:	ff->	Z/gam 1	ıma	qq-> 81	QQ	gg-> 82	QQ	ff->Zg 15	ff->Wg 19	
С	decays:	A->	N4N4	A->E	E4E4	A->l	J4U4	A->D	4D4	A->tt	
СI	DC A=gar	nma	: -	173	3	169	9	168		167	
С	IDC A=Z:		189	188	3	181	l	180		179	
C	.Selection	of th N N N	ne proo MSEL= MSUB(MSTP(cesse =0 (1)=1 [43)=	es: pp ! =0 3 ! D:	->Z/g) - pro =3, 1	gamm ocess - only	a-> is sw gamr	itched o na, 2- o	ff, =1 - sw nly Z, 3- 2	vitched on Z+gamma
C	.Switches	of n	eeded	Z-bo	son n 8=174	nedia	ted cl	nanne	els		
10		N		(ISU	B.1)=()					
Ċ	for Z->m	umu		(_,.,	-					
		Ν	NDME	(184	1)=1						
C	makes m	nuon	decay	,	,						
С		Ν	NDCY	(PYC	OMP	(13),	1)=1				
С с	.Setting so	qrt(s) () range CKIN(1	e acc)=2.*	eptab *PMA	le for S(13	r proce ,1)+0c	esses 10	of inter	est	
								~ •••			

CALL PYINIT('CMS','p','p',ECM) CALL PYINIT('CMS','e-','e+',ECM)

C...Histograms.

С

CALL PYBOOK(13,'mu-spectrum',100,0D0,1000D0)

mu=0 !<10^31-1 Emu=0.0 DATA Dmu/3501*0d0/

Example pp→Z→μμ (3)

C...Event generation loop.

c DO 200 IEV=1,NEV if(mod(iev,100).eq.0) write(*,*) 'begin event no', iev if(IEV/5000.eq.IEV/5000.) write(*,*)'number of event = ',IEV CALL PYEVNT c CALL PYEDIT(1)

C...List first event

IF(IEV.LE.1) CALL PYLIST(2)

C...Counting of particles

- DO 200 I=1,N En=P(I,4) IF(K(I,2).EQ.13) then mu=mu+1 Emu=Emu+En iE=int(En) Dmu(iE)=Dmu(iE)+1.D0/NEV CALL PYFILL(13,P(I,4),1.D0) ENDIF
- C...End of event generation loop.
- 200 CONTINUE

4

c5

C...Cross section - not relevant in this case. Histograms. CALL PYHIST CALL PYSTAT(1) write(*,*)'multiplicities of mu',real(mu)/NEV

> open(1,file='mu-spectrum.txt',status='new') write(1,4)(Dmu(iE),iE=0,1000) format(5(2x,e9.3)) format(122(5(2x,e9.3),/),/,/)

CompHEP

http://comphep.sinp.msu.ru/

Brief description

Package is aimed for calculation of cross sections and generation of hard (basic) processes from matrix element (lagrangian) in the lowest order of perturbation theory. No higher orders, loops, hadronization are possible.

All control is realized through interface (interactively).

Although, distant control is foreseen, but much less suitable.

Installation

After registration at the webcite (it is not required for CalcHep), one dowloads the last version of archive **CompHEP**.

Additionally, one needs to download and launch **Xming** (or similar) to work at remote Linux-server under Windows. In **putty**, tick on **X11**. Under Linux, to enter at server E307 use **ssh –x**.

Further, follow instructions at the webcite.

```
mkdir comphep
cd comphep
tar xzvf comphep-XXXX.tgz
cd comphep-XXXXX
./configure или ./configure ---with-gcc4
make
make
make setup WDIR=$HOME/comphep/run-XXXX - Creation of working
directory
```

./comphep - before it, launch Xming and rm LOCK

Example 1 pp→z→µµ

Model: SM, unitary gauge	CompHEP version 4.5.1	CompHEP version 4.5.1
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Process: p,p → m,M Feynman diagrams B diagrams in 8 subprocesses are constructed. View diagrams Square diagrams Square diagrams
Enter Final State: p.p \rightarrow n.M Exclude diagrams with A Keep diagrams with Z	F1-He1p,F2-Man,PgUp,PgDn,Home,End,# ,Esc	F1-Help F2-Man F3-Model F5-Switches F6-Results F9-Quit

Example 1 pp→z→µµ

Momentum assignment: 12→34

➤ CompHEP version 4.5.1 Process: p,p -> m,M (8 subprocesses) (sub)Process: u,U -> m,M Monte Carlo session: 1(begin) Subprocess Initial state Model parameters Constraints QCD scale Uidth scheme: Fixed Cuts Kinematics Regularization Numerical Session	➤: CompHEP version 4.5.1 Process: p,p -> m,H (8 subprocesses) (sub)Process: q,U -> m,M Monte Carlo session: 1(begin) QCD scale QCD alpha Processing QCD alpha Plant alpha QCD alpha <th><pre>>: CompHEP version 4.5.1 Process: p.p -> m,M (8 subprocesses) (sub)Process: u,U -> m,M Regularization 1 Clr-Rest-Del-Size Momentum I> Mass <i> Width <i 12="" <="" i2="" imz="" iwz="" power="" pre=""></i></i></pre></th>	<pre>>: CompHEP version 4.5.1 Process: p.p -> m,M (8 subprocesses) (sub)Process: u,U -> m,M Regularization 1 Clr-Rest-Del-Size Momentum I> Mass <i> Width <i 12="" <="" i2="" imz="" iwz="" power="" pre=""></i></i></pre>
F1-Help F2-Man F4-Diagrams F5-Squared Diagrams F6-Results F9-Quit		F1-F2-Top-Bottom-GoTo-Find-Zoom-ErrMes-

Example 1

Further, one needs to repeat for the processes with other quarks (subprocess) and add the result

Some other options:

Initial states – one can change init.energy, PDF

Model parameters and Constraints - the used parameters (masses,..)

Kinematics - scheme of momentum (particles) transitions (accessible, if ambiguous)

Set/Display distribution – assignment (before integration)/drawing (after) of distribution (over limited set of variables)

Generate events – event generation (4-momentums of products) \rightarrow F6

Write results – to write results for $|M|^2$ in one of the formats suggested

Example 1 pp→z→µµ

Output of CompHEP

("new format")

```
- 🗆 X
>--- CompHEP version 4.5.1
##beam: ID=1, energy=3.50000E+03, KF=2212, name='proton', mass=9.38000E-01,;
##beam: ID=2, energy=3.50000E+03, KF=2212, name='proton', mass=9.38000E-01,;
##strfun: IDbeam=1, name='CTEQ', version='611', PDFid=58, PDFgr=4,;
##strfun: IDbeam=2, name='CTEQ', version='611', PDFid=58, PDFgr=4,;
|##process: ID=1, name='u U -> m M', CrosSec=2.41904E+02, CrosSecErr=1.68650E-(
3, Nparton=4,
            master=3, type='scattering',;
##generator: IDprocess=1, name='CompHEP', name='4.5.1',;
##n_event: IDprocess=1, N= 10000, mult=0.00000E+00, maxW=1.50512E+00, CutN=0
##parton: IDprocess=1, in=1, out=0, KF=2, name='u',
           mass=0.00000E+00,;
##parton: IDprocess=1, in=2, out=0, KF=-2, name='U',
           mass=0.00000E+00.;
##parton: IDprocess=1, in=0, out=3, KF=13, name='m',
           mass=1.05660E-01.:
##parton: IDprocess=1, in=0, out=4, KF=-13, name='M',
           mass=1.05660E-01.;
##QCDinfo: IDprocess=1, NL=1, Nflavour=6, QCDLambda=1.65200E-01,;
##format: IDprocess=1, ProcNumber='i', p1.3='17.10E', p2.3='17.10E', p3.1='17.
10E',
           p3.2='17.10E', p3.3='17.10E', p4.1='17.10E', p4.2='17.10E', p4.3='17
.10E',
           Qsquared='10.3E', color_chain='string',;
##total: Nproc=1, Nevent= 10000, CrosSec=2.41904E+02, CrosSecErr=1.68650E-03
 ,;
       p<sub>1z</sub>
                           \mathbf{p}_{2z}
                                                                P<sub>3v</sub>
                                              P<sub>3x</sub>
 1: 2.8497141097E+02:-1.0083682765E+00:-1.2024559980E+01:-1.1004961890E+01: 1.
8122624651E+02: 1.2024559980E+01: 1.1004961890E+01: 1.0273679618E+02: 3.390E+0
 1:(1 2): P<sub>3z</sub> P<sub>4x</sub> P<sub>4y</sub> P<sub>4z</sub>
1: 4.9196038114E+02:-6.0232040253E-01:-9.7732280980E+00: 1.2790439482E+0
1:(1 2): D<sub>37</sub>
```

58

Example of ROOT script to read ComHep results (1)

TCanvas *vC1; TGraph *grin, *grout;

void rd2()
{
// File name
//#include <math.h>
//#include <TH2F.h>
//#include <TH1F.h>
#define Nfiles 5
#define nch 20000
#define nchMU 25000
// Int_t Nfiles = 5;
TString vInFile [Nfiles] = {"events_1.txt", "events_2.txt", "events_3.txt", \$
Double_t mass = 2000.0, mass2=mass*mass;
Double_t mu=0.10566, mu2=mu*mu;

TString vlnFileMU [4] = {"/afs/cern.ch/user/b/belotsky/comphep/run/mu/events\$ "/afs/cern.ch/user/b/belotsky/comphep/run/mu/events_2.txt", "/afs/cern.ch/user/b/belotsky/comphep/run/mu/events_3.txt", "/afs/cern.ch/user/b/belotsky/comphep/run/mu/events_4.txt"}

// File info

// TString str [30]; TString str1,str2,str3,str4,str5,str6; Float_t p1,p2; Double_t crosec [Nfiles], crosecMU [4]; Char_t ch="A"; Int_t nev [Nfiles], nevMU [4];

// histogram parameters Double_t weight [Nfiles]; Float_t X,Y,w; // read file and add to fit object Double_t p1x [Nfiles][nch], p1y [Nfiles][nch], p1z [Nfiles][nch]; Double_t p2x [Nfiles][nch], p2y [Nfiles][nch], p2z [Nfiles][nch];

Double_t ps1 [Nfiles][nch], ps2 [Nfiles][nch];

Double_t Resx [Nfiles][nch], Resy [Nfiles][nch];

Double_t pm1x [4][nchMU], pm1y [4][nchMU], pm1z [4][nchMU]; Double_t pm2x [4][nchMU], pm2y [4][nchMU], pm2z [4][nchMU]; Double_t psm1 [4][nchMU], psm2 [4][nchMU];

Double_t Resmx [4][nchMU], Resmy [4][nchMU];

// read file

```
cout << endl << "Start of reading data on muon background." << endl;
 for (Int t Nf=0; Nf<4; Nf++)
  ifstream vInputMU;
vInputMU.open(vInFileMU[Nf], ios::in);
  Int t Npos1=1269, Npos2=1347;
  while(ch != '='){
  vInputMU.seekg(Npos1);
  ch = vInputMU.peek();
// cout << Npos1 << " and ch = " << ch << endl;</pre>
  Npos1++;}
  vInputMU.seeka(Npos1):
  vInputMU >> crosecMU[Nf];
// cout << "muon partial cross section = " << crosecMU[Nf] << endl;</pre>
while(ch != ':'){
  vInputMU.seekg(Npos2);
  ch = vInputMU.peek():
  Npos2++;}
  Int_t L, Nposi=Npos1+10;
  for(Int_t i=0; i<12;){
  vInputMU.seekg(Nposi); ch=vInputMU.peek();
  if(ch == ':'){if(i == 0){L=Nposi;} i++;}
  Nposi++;}
  L=Nposi-L-1:
// cout << "Lenght of line is " << L << endl:
Int t ich=0;
  while(! vInputMU.eof()){
  vInputMU.seekg(Npos2);
  vInputMU >> pm1x[Nf][ich] >> ch >> pm1y[Nf][ich] >> ch >> pm1z[Nf][ich] >> $
  vInputMU >> pm2x[Nf][ich] >> ch >> pm2y[Nf][ich] >> ch >> pm2z[Nf][ich];
  psm1[Nf][ich]=pm1x[Nf][ich]*pm1x[Nf][ich]+pm1y[Nf][ich]*pm1y[Nf][ich]+pm1z[$
  psm2[Nf][ich]=pm2x[Nf][ich]*pm2x[Nf][ich]+pm2y[Nf][ich]*pm2y[Nf][ich]+pm2z[$
  Npos2=Npos2+L;
  ich++:}
  nevMU[Nf]=ich-1;
  cout << "Number of events in " << Nf+1 << " channel is " << nevMU[Nf] << en$
  vInputMU.close():
```

Example of ROOT script to read ComHep results (1)

Double_t crosectotMU = 0.0; for(Int_t Nf=0; Nf<4; Nf++){ crosectotMU += 2.*crosecMU[Nf];} cout << "Total muon cross section = " << crosectotMU << " pb." << endl; cout << endl << "Start of reading data on useful signal." << endl; for (Int_t Nf=0; Nf<Nfiles; Nf++)

ifstream vInput; vInput.open(vInFile[Nf], ios::in);

Int_t Npos1=1269, Npos2=1347;

```
while(ch != '='){
    vInput.seekg(Npos1);
    ch = vInput.peek();
// cout << Npos1 << " and ch = " << ch << endl;
Npos1++;}
    vInput.seekg(Npos1);
    vInput.seekg(Npos1);
    vInput >> crosec[Nf];
```

```
while(ch != ':'){
vlnput.seekg(Npos2);
ch = vlnput.peek();
Npos2++;}
Int_t L, Nposi=Npos1+10;
for(Int_t i=0; i<12;){
vlnput.seekg(Nposi); ch=vlnput.peek();
if(ch == ':'){if(i == 0){L=Nposi;} i++;}
Nposi++;}
L=Nposi-L-1;</pre>
```

// cout << "Lenght of line is " << L << endl;</pre>

```
Int_t ich=0;
while(! vInput.eof()){
vInput.seekg(Npos2);
vInput >> p1x[Nf][ich] >> ch >> p1y[Nf][ich] >> ch >> p1z[Nf][ich] >> ch;
// cout << p1x[Nf][ich] << " " << p1y[Nf][ich] << " " << p1z[Nf][ich] << end$
vInput >> p2x[Nf][ich] >> ch >> p2y[Nf][ich] >> ch >> p2z[Nf][ich];
// cout << p2x[Nf][ich] << " " << p2y[Nf][ich] >> ch >> p2y[Nf][ich] << " " << p2z[Nf][ich];
// sout << p2x[Nf][ich] << " " << p2y[Nf][ich] +> therefore the source of t
```

Npos2=Npos2+L; ich++;} nev[Nf]=ich-1; cout << "Number of events in " << Nf+1 << " channel is " << nev[Nf] << endl; vInput.close()

Double_t crosectot = 0.0, fact=2.0; for(Int_t Nf=0; Nf<Nfiles; Nf++){ if(Nf==4){fact=1.0;} crosectot += fact*crosec[Nf];} cout << "Total useful signal cross section = " << crosectot << " pb." << endl;

// THETA1 VS THETA2 DISTRIBUTION

tm1 = new TH1F("tm1","MUON theta 1",45,0,,180.); ttm2 = new TH2F("ttm2","MUON theta 1 vs theta 2",30,0.,180.,30,0.,180.); for (Int_t Nf=0; Nf<4; Nf++) { weight[Nf]=crosecMU[Nf]/nevMU[Nf]: w = float(weight[Nf]);for (Int tiev=0; iev<nevMU[Nf]; iev++){</pre> Resmx[Nf][iev] = acos(pm1z[Nf][iev]/sqrt(psm1[Nf][iev]))*180./3.14159265; Resmy[Nf][iev] = acos(pm2z[Nf][iev]/sqrt(psm2[Nf][iev]))*180./3.14159265; X = float(Resmx[Nf][iev]): Y = float(Resmy[Nf][iev]); ttm2->Fill(X,Y,w); tm1->Fill(X,w); ttm2->Fill(180.-X.180.-Y.w): tm1->Fill(180.-X,w); } cout << "The following histogrames are created:" << endl:

```
cout << "tt2 = theta1 vs theta2\n" << "t1 = theta1\n";
cout << "e2 = Ekin1 vs Ekin2\n" << "et2 = Ekin1 vs theta1" << endl;
cout << "m1 = m12\n" << "t1 = theta12\n" << "mt2 = m12 vs theta12." << endl;
cout << "And the same for muons named with appending 'm' before 1/2" << endl;
cout << "Now mt2 is drawing." << endl;
```

```
mt2->Draw("cont1");
```

}

```
/* multigr = new TMultiGraph();
```

```
for (Int_t Nf=0; Nf<Nfiles; Nf++)
{
multigr -> Add(gr[Nf]);
}
multigr->Draw("ALP");
```


Repeat the task fulfilled in Pythia, point a): calculate cross section, write simulation data

Example 2 pp→U₄U₄

CompHEP version 4.5.1 Model: _New flavours	<u>_ </u>
Abstract	
CompHEP package is created for calculation of decay and high energy collision processes of elementary particles in the tree approximation. The main idea put into the CompHEP was to make available passing from the Lagrangian to the final distributions effectively. with the high level of automatization. Use the F2 key to get the information about interface facilities and the F1 key to get online help. Variables Constraints Particless Lagrangian Composite	Edit Model

						- Parti	totes	S		21	
_{Clr-Rest-Del-}	Size										
Full name	ΙΡ	l af	°l2*spir	nl mass	lwidth	lcolor	rlau≿	<l> LaTeX(A)</l>	<1>	LaTeX(A+)	<
gluon	IG	IG	12	10	10	18	IG	IG	IG		
photon	1A -	1A	12	10	10	11	IG	IA	IA		
Z boson	1Z	ΙZ	12	IMZ	lωZ	11	1	IZ	ΙZ		
W boson	₩+	₩-	12	IMW	լոր	11	I I	W^+	₩^-		
neutrino	Ine	INe	11	10	10	11	ΙL	l\nu^e		\nu}^e	
electron	le	IΕ	11	10	10	11	I I	le		[e}	
mu-neutrino	lnm	1 Nm	11	10	10	11	ΙL	T\nu^\mu		Nnu}^Nmu	
muon	l m	IΜ	11	l Mm	10	11	I I	1\mu		Nmu}	
tau-neutrino	Inl	IN1	11	10	10	11	ΙL	\nu^\tau	∖bar{	\nu}^\tau	
tau-lepton	11	ΙL	11	IMtau	10	11	I I	l\tau		\tau}	
u-quark	lu	IU	11	10	10	13	1	lu		[u}	
d-quark	Id	۱D	11	10	10	13	1	Id		[d}	
c-quark	lc_	IC	11	IMc	10	13	1	lc		[c}	
s-quark	ls	IS	11	IMs	10	13	1	ls		s}	
t-quark	lt	IT	11	IMtop	lwtop	13	1	lt		t}	
b-quark	IЬ	I B	11	IМЬ	10	13	1	IЬ	I∖bar{	jb}	
Higgs	IH	IΗ	10	IMH	lωH	11	1	IH	IH		
AC-lepton	lla	ILa	11	IMla	10	11	1	IL_{ac}^{}		L}_{ac}^{++}	
tera-lepton	ltl	IT1	11	Mtl	10	11	1	\zeta^{}		zeta}^{++}	
tera-baryon	ltu	lTu	10	IMtu	10	11	I I	100^{++}	I∖bar{	U}\bar{U}^{}	
<mark>U</mark> 4-quark	lu4	104	11	TMu4	10	13	I I	IU_4^{+2/3}		U}_4^{-2/3}	

	Mathematical operations are very		E)	(a	n	nple 2				_
D D D D				n	n-	\ . .	.1		_ 🗆 X	
T It IA I	4 I-2*EE/3 ▼	▲ G(m3)					Right		<mark>/</mark> _	
	UG -EE*Mtop/(2*MW*SW) -EE/(12*CW*SW) -EE*Sgrt2*Vub/(4*SW)		*G(m3)*(1-G5) 5)	-4*SW^2*G(m	J^2*G(m3)*(1+G5)	Or	>< <mark>^~/comphep/run-</mark> Name	-4.5.1 Size UPDTR	MTime	
U IO IW+ I U IS IW+ I U Iu IA I	-EE*Sqrt2*Vud/(4*3₩) -EE*Sqrt2*Vus/(4*S₩) -2*EE/3	IG(m3)*(1-6 IG(m3)*(1-6 IG(m3)	5) 5)			alternatively.	/models	4096 Ar	or 5 2011 <mark>*</mark>	
U lu IG I U lu IZ I	GG -EE/(12*C⊎*S⊎)	G(m3) (3-4*SW^2)	*G(m3)*(1-65)	-4*SW^2*G(m	8)*(1+G5)	in more	//results	4096100	t 3 20:15	
₩+ 1₩- 12 1 A 1A 1₩+ 1₩- A 1₩+ 1₩- 17	ICW*EE/SW IEE^2 ICW*EF^2/SW	1m2.p1*m1.m 12*m1.m2*m3 12*m1 md*m2	5-m3.p1*m1.m2 .m4-m1.m3*m2. m3-m1 m2*m3	!-m1.p2*m2.m; .m4-m1.m4*m2. .m4-m1 m3*m2	5+m3.p2*m1 .m3 .m4		//usr	4096 00	t 18 2010	
G IG IG.t I H IH IH IH	0% 54 2/2 -3*EE^2*MH^2/(4*MW^2*SW^2)	Im1.m3*m2.M 11	3-m1.M3*m2.m3	M4 M1,00 M2.		suitable	LOCK	54 00	t 3 20:15	
H IH IW+ IW- H IH IZ IZ	IEE^2/(2*SW^2) IEE^2/(2*CW^2*SW^2) IEE^2/(2*CW^2*SW^2)	lm3₊m4 lm3₊m4		7 4 74 0		manner:	*SLHA.sh *archiv	2427 00 305100	t 18 2010 t 18 2010	
₩+ I₩+ I₩- I₩- ₩+ I₩- IZ IZ Is IIs I0 I	IEE:22/5W12 I-CW2*EE^2/SW^2 I>#EE	12*m1.m2*m3 12*m1.m2*m3 10(m3)	.m4-m1.m4*m2. .m4-m1.m3*m2.	.m3-m1.m3*m2. .m4-m1.m4*m2.	.m4 .m3		*cascade	496 00	t 18 2010	
La Ila IZ I A Itu ITu I	12 EE 12*EE 12*EE	IG(m3) Im1.p2-m1.p	3				*comphep	579 00	t 18 2010	
Z Itu ITu I Tl Itl IA I	IEEt/(2*CW*SW) I2*EE	m1.p2-m1.p G(m3)	3			Similarly, for the	comphep.ini	488915	t 18 2010 27 12:36	
T1 t1 Z <mark>U4 </mark> u4 A	IEE/(4*CW*SW) I-2*EE/3	(1-4*SW^2) G(m3)	*G(m3)*(1-G5)	-4*SW^2*G(m	3)*(1+G5)	rest: variables	*mix	801 00	t 18 2010	
U4 Iu4 IG I U4 Iu4 IH I	IGG I-EE*Mu4/(2*MW*SW) ⊢EE/(40*CU*CU)	IG(m3) 11	***/7)*/4 ***	4*0100*0/	2)*(4.CE)	constraints	*mk_tab	698100	t 18 2010	
F1-F2-Top-Bottom-GoTo-F	ind-Zoom-EnrMes	m1 n3_r	. G(3) · (1=03)	-4.30 2.0(0	5)·(1+05)	narticles	*num_batch.pl	46560 00	t 18 2010	
	Ο (113)=γ _μ (ν _{μ3})	шт.р 3 –р	νο _{μ1}			particies	/models	101211 (1	(*) <u>01 1046</u>	
.1/models		×					<u></u>	~~~~~~		
Right		🗕 U	u	Z		-EE/(12*CW*SW)			(3-4*SW^;	2)*G(m3)*
Name	Size MTime	W+ 7	W-	Z W+	 W_	-CW*EE/SW			m2.p1*m1	.m3-m3.p1 m3_m4_m1
func5.mdl	253679 Oct 18 2010 ^	A	W+	W-	Z	-CW*EE^2/SW			2*m1.m2*i	m2.m3-m1.
func6.mdl	369247 Oct 18 2010	G]G	[G.t		GG*Sqrt2/2			m1.m3*m2	.M3-m1.M3
func7.mdl	371840 Oct 18 2010 371839 Oct 18 2010	Н	H	H	H	-3*EE^2*MH^2/(4*MW	I^2*SW^2)		1	
func9.mdl	29310ct 18 2010	H	H	W+	W-	EE^2/(2*SW^2)			m3.m4	
lgrng1.mdl	355 Oct 18 2010	п W+	100+	100-	100-	IFF02/SW02			10.104 2*m1 m2*1	m3 m4-m1
lgrng10.mdl	1049 Oct 18 2010	W+	W-	12	12	I-CW^2*EE^2/SW^2			2*m1.m2*i	m3.m4-m1.
lgrng11.mdl	55357 Apr 5 2011 *	La	lla	IA	1	12*EE			G(m3)	
lgrng2.mdl	5635 Oct 18 2010	La	lla	z		-2*EE*SW/CW			G(m3)	
lgrng3.mdl	50351 Mar 31 2011	A	tu	Tu		2*EE			m1.p2-m1	.p3
lgrng4.mdl	14095 Oct 18 2010	Z	tu	Tu		EEt/(2*CW*SW)			m1.p2-m1	.p3
lgrng5.mdl	114388 Oct 18 2010	Tl	t1	A		2*EE			G(m3)	
igrng6.mdl	153259 0ct 18 2010	Tl	tl	Z		[EE/(4*CW*SW)			(1-4*SW^:	2)*G(m3)*
l lgrng/.mal	153250 000 18 2010	U4	u4	A		-2*EE/3			G(m3)	
- 1g11ig0.md1	4642M (4%) of 104C	04	u4	IG		GG			G(m3)	
lgrng11.mdl		04 <mark>0</mark> 4	u4 u4	Z		-EE/(12*CW*SW)			1 (3-4*SW^:	2)*G(m3)*

1) pp→L_{AC}⁺⁺L_{AC}⁻⁻ (Q=-2, m=500 GeV, T3=0)

$$L_{Zff} \sim \overline{F}_L(\overline{g}(T_3 - Q \cdot \xi)Z)F_L + \overline{f}_R(\overline{g}(-Q \cdot \xi)Z)f_R$$
2) pp→ζ⁺⁺ζ⁻⁻ (Q=-2, m=500 GeV, T3=-1/2)

3) $pp \rightarrow \phi^+ \phi^-$ L= $e(\phi \partial_\mu \phi^* - \phi^* \partial_\mu \phi) A_\mu$ (m=500 GeV)

MadGraph v.4

Tree-level event generator

Generation of the code on-line

- Register on the web-site http://madgraph.hep.uiuc.edu/
- For code generation use MadGraph v4

Code can be generated either by:

Model:	SM	 Model descriptions
Input Process:	e+e->mu+mu-	Examples/format
Max QCD Order:	99	
Max QED Order:	99	
p and j definitions:	p=j=d u s c d~ u~ s~ c~ g	▼
sum over leptons:	I+ = e+, mu+ ; I- = e-, mu- ; vI	= ve, vm ; vl~ = ve~, vm~ →
Submit		

Installation of MadGraph

Download <u>MadGraph V4</u>

 Unpack the archive to the working directory (tar -zxvf MG_ME_V4.5.1.tar)

• Enter the directory MG_ME_V4.5.1, run make

<u>Event generation and calculation of</u> <u>the cross-section of the process</u>

- Download the generated code (<u>Code Download</u>)
- Unpack the code to the newly created directory in the folder MG_ME_V4.5.1

Dir name	Role or Content
lib	libraries
Events	event files, results, logfiles, plots.
bin	executables and scripts
Source	process independant source files
Cards	steering cards
SubProcesses	directories containing subprocesses and process dependant source files
HTML	html files to surf on results

- For event generation and calculation of the crosssection of the process e+e-→mu+mu- execute ./bin/generate_events in your directory
- If you don't need event generation you should execute the following commands one by one instead of the above mentioned command

./bin/survey

./bin/refine

- In this case you get calculation of the cross-section only.
- To see the results open results.html in the SubProcesses directory

Process results s= 43.728± 0.124(fb)

Graph	Cross Sect(fb)	Error(fb)	Events (K)	Eff	Unwgt	Luminosity
Sum	43.728	0.124	62	0.7		
P0 e+e- mu+mu-	43.728	0.124	62	0.7		463.00

- Generated events can be found in the Events directory
- The format of this file is LHE (run1_unweighted_events.lhe.gz)

The structure of the file with actual events

4	0 0.4	437280	0E-05	0.9	11880	0E+0	0.7546772E-02	0.1180000E+00			
	-11	-1	0	0	0	0	0.0000000000E+00	0.0000000000E+00	0.19915391434E+03	0.19915391434E+03	0.0000000000E+00 01.
	11	-1	0	0	0	0	0.0000000000E+00	0.0000000000E+00	-0.29258538952E+03	0.29258538952E+03	0.0000000000E+00 0. 1.
	-13	1	1	2	0	0	0.19193037637E+03	-0.80279241429E+02	0.77979187277E+02	0.22217736074E+03	0.0000000000E+00 01.
	13	1	1	2	0	0	-0.19193037637E+03	0.80279241429E+02	-0.17141066246E+03	0.26956194312E+03	0.0000000000E+00 0. 1.
<td>ent></td> <td></td>	ent>										
Working with cards in MadGraph

- Cards are used to change the parameters of the model, to choose the energy of colliding particles and number of generated events, to set the cuts and so on. These cards can be found in Cards directory
- To choose the values of the parameters of the model, masses of gauge bosons, particle widths use param_card.dat
- Energy and type of colliding particles, cuts, PDFfunctions can be edited with the help of run_card.dat

param_card.dat

Bloc	k SMINPUT	ſS	# Standa	rd Mod	del	in	nput	3							
	1	1.32	506980E+0	2 #	al	oha	a em	(MZ) (-	1)	SM I	MSI	oar			
	2	1.16	639000E-0	5 #	GI	Fei	rmi	de la des							
	3	1.18	000000E-0	1 #	al	oha	a s (MZ) SM	M	Sbar					
	4	9.11	880000E+0	1 #	ZI	nas	33 (as inp	ut	para	ame	ete	r)		
Bloc	k MGYUKAN	A	# Yukawa	masses	s m,	/ =	=v/s	grt(2)		-			- 11 - I		
#	PDG	YI	MASS					To the feat							
	5	4.20	000000E+0	0 #	mbo	oti	com	for th	e	Yuka	wa	v	b		
	4	1.42	000000E+0	0 #	mcl	nai	cm	for the	e	Yuka	wa	v	c		
	6	1.64	500000E+0	2 #	mto	qc		for the	e	Yuka	wa	v	t		
2	15	1.77	700000E+0	0 #	mta	au		for th	e	Yuka	wa	v	ta		
Bloc	k MGCKM	# C	KM elemen	ts for	r Ma	ad	Grap	h							
	1 1	9.75	000000E-0	1 #	Vu	d i	for	Cabibb	0 1	matr:	ix				
Bloc	k MASS	# 1	Mass spec	trum	(kin	ner	nati	c mass	es)					
#	PDG	M	ass												
	5	4.70	000000E+0	0 #	bot	tto	om	pole :	ma	33					
	6	1.74	300000E+0	2 #	top	Þ		pole :	ma	33					
	15	1.77	700000E+0	0 #	tai	1		mass							
	23	9.11	880000E+0	1 #	Z			mass							
	24	8.04	190000E+0	1 #	W			mass							
	25	1.20	000000E+0	2 #	Н			mass							
#		PDG	Width												
DECA	Y	6	1.508336	49E+00	D	#	top	width							
DECA	Y	23	2.441403	51E+00	D	#	Z	width							
DECA	Y	24	2.047599	51E+00	D	#	W	width							
DECA	Y	25	5.753088	48E-03	3	#	H	width							
#	BR		NDA		ID1			ID2							
	8.274510	012E-02	2		4			-4	#	BR (Н	->	С	cbar)
	7.17809696E-01 0.00000000E+00		2		5			-5	#	BR (Н	->	b	bbar)
			2		6		-6	#	BR (н -	->	t	tbar)	
	4.31720144E-02		2		15			-15	#	BR (H	->	ta	u- tau	+)
	6.90597075E-03		2		23			23	#	BR (Н	->	Z	Z^ (*))
	7.459063	395E-02	2		24			-24	#	BR (H	->	W	W^ (*))
	3.017655	558E-02	2		21			21	#	BR (H	->	g	g)
	1.42800	773E-03	2		22			22	#	BR (H	->	A	A)

run_card.dat

# Number	of events and rnd seed	×
*******	***************************************	*
10000	= nevents ! Number of unweighted events requested	
22	<pre>= iseed ! rnd seed (0=assigned automatically=default))</pre>	
#******	***************************************	*
# Collide	r type and energy	*
#******	***************************************	*
1	= lpp1 ! beam 1 type (0=NO PDF)	
1	= lpp2 ! beam 2 type (0=NO PDF)	
7000	= ebeam1 ! beam 1 energy in GeV	
7000	= ebeam2 ! beam 2 energy in GeV	
#******	***************************************	*
# Beam po	larization from -100 (left-handed) to 100 (right-handed)	*
#******	***************************************	*
0	= polbeam1 ! beam polarization for beam 1	
0	= polbeam2 ! beam polarization for beam 2	
#******	***************************************	*
# PDF CHO	ICE: this automatically fixes also alpha s and its evol.	*
#******	***************************************	*
'cteq611	' = pdlabel ! PDF set	
#******	*****	*
# Renorma	lization and factorization scales	*
#******	***************************************	*
F	= fixed ren scale ! if .true. use fixed ren scale	
F	= fixed fac scale ! if .true. use fixed fac scale	
91.1880	= scale ! fixed ren scale	
91.1880	= dsqrt q2fact1 ! fixed fact scale for pdf1	
91.1880	= dsqrt q2fact2 ! fixed fact scale for pdf2	
1	= scalefact ! scale factor for event-by-event scales	6

Type of colliding particles (lpp1 and lpp2 in the card run_card.dat)

- -1: PDF for antiproton
- 0: PDF is switched off
- 1: PDF for proton
- 2: PDF for photon

PDF-functions in MadGraph

name	pdflabel	data file	$\alpha_S(m_Z)$	nloop
MRST2002NLO	mrs02nl	mrst2002nlo.dat	0.1197	2
CTEQ6M	cteq6_m	cteq6m.tbl	0.118	2
CTEQ6D	cteq6_d	cteq6d.tbl	0.118	2
CTEQ6L	cteq6_1	cteq6l.tbl	0.118	2
CTEQ6L1	cteq611	cteq6l1.tbl	0.130	1
CTEQ5M	cteq5_m	cteq5m.tbl	0.118	2
CTEQ5L	cteq5_1	cteq5l.tbl	0.127	1

Generating events off-line

- Execute the following command in the MG_ME_V4.5.1 directory
 cp R Template Dir_name
- Folder named Dir_name should appear
- Edit the card proc_card.dat

 To generate the code off-line in the Dir_name directory execute

./bin/newprocess

• To see the diagrams open the file index.html

MadEvent Card for pp>gg

 Edit the cards param_card.dat and run_card.dat (e.g. require 200 events)

• ./bin/generate_events

Hadronization

- Download the <u>Pythia and PGS package</u> from the web-site, install it in the MG_ME_V4.5.1 directory (tar -zxvf ..., make)
- For this package to operate you should have cards pythia_card.dat and pgs_card.dat in the Cards directory
- Next step is a usual event generation: the package will operate automatically while the event generation

• After event generation in the Events directory some new files appear such as:

pythia_events.lhe.gz
pythia_events.hep.gz
pgs_events.lhco.gz

Working with the MadAnalysis package

- Download the <u>MadAnalysis</u> package from the web-site, install it in the MG_ME_V4.5.1 directory
- Execute ./plots_events, then indicate the pathway to the file with actual events (.lhe or .lhco)
- After the execution of the above command in the MadAnalysis directory you should see the file plot.top (to work with this file you need Topdrawer)

Working with Topdrawer

• Download Topdrawer

(see Downloads/MadAnalysis)

- Version for Windows: in the command line execute the ...\td.exe plots.top (file plots.top should be placed to the same folder as the file td.exe)
- Open plots with the help of gsview

<u>Conversion to the ROOT format</u>

- Download the <u>ExRootAnalysis</u> package from the web-site, install it to the MG_ME_V4.5.1 directory
- Enter the <u>ExRootAnalysis</u> directory and execute
 ExRootSTDHEPConverter
 "PATH_TO_YOUR_DIRECTORY"/run1_pythia_events.hep
 "PATH_TO_YOUR_DIRECTORY"/run1_pythia_events.root

MC generators: experimentalist point of view

Real experiment

We obtain new knowledge from experiment of high energy physics **not in direct** way.

We have to compare real data with MC simulated data treated in the same way. MC simulation should base on our modern theoretical knowledge. The target of this course – MC generation - is the start point to obtain MC

simulated data (mentioned above).

backgrounds)

Structure of the experiment: Where is the place of MC generators?

The chain of treatment with data and simulation we can show schematically (below). On this scheme we can show where do we use different program packages and tools to treat (create/change) of the data flows:

MC simulation is more complicated...

MC generator consists on several parts.

There are simple ME generators (calculators) and multi-purpose generators.

Generator MCFM

Generator MCFM

MCFM (*Monte Carlo for FeMtobarn processes*) – parton level ME generator (calculator). This genarator simulates different processes on hadron-hadron colliders with cross-sections on femtobarn level.

For most of the processes matrix elements include more precision cross-section calculation mechanism – NLO (next to leading order) and take into account different spin correlations.

This generator uses Fortran code. However it is under full support even now. It is widely in use for theoretical predictions for the fenmtobarn cross-section level processes.

In particular, it has been used for <u>Tevatron</u> experiments. Currently CERN scientists (from <u>LHC experiments</u>) are using it too.

It gives very good and precise predictions for the cross-sections.

Current version is MCFM-6.6 (April 2013) Site: http://mcfm.fnal.gov/

Generator MCFM: installation

Download tar archive, unpack.

You can install it with or without additional packages like LHAPDF (additional parton distribution functions), CERNLIB (possibility to make histograms) etc. (You need Fortran90 compiler)

cd MCFM-6.6	[esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig% cd MCFM-6.6
make	[esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6% 11 total 48
Πακε	drwxr-xr-x 3 esoldato zp 2048 Dec 2 00:03 Bin drwxr-xr-x 2 esoldato zp 2048 Dec 2 00:03 Doc
	-rwxr-xr-x 1 esoldato zp 1795 Feb 23 2013 Install -rw-rr 1 esoldato zp 31596 Mar 29 2013 makefile
(~5-10 minutes)	drwxr-xr-x 5 esoldato zp 2048 Dec 2 00:03 QCDLoop
	drwxr-xr-x 81 esoldato zp 4096 Dec 2 00:03 src
	<pre>drwxr-xr-x 6 esoldato zp 2048 Dec 2 00:03 TensorReduction [esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6% Install zsh: command not found: Install [esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6% ./Install Warning: no directory specified for CERNLIB Warning: no directory specified for LHAPDF Bin Doc Install makefile makefile.orig obj QCDLoop README src TensorReduction Compiling QCDLoop library</pre>

tar –xvf MCFM-6.6.tar.gz

make[1]: Leaving directory `/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6/TensorReduction/ov'

Installation complete. You may now compile MCFM by running make. [esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6%

If you need LHAPDF – you have to edit makefile (write the LHAPDF lib path) and execute 'make'

o obj/recurrenceB.o obj/recurrenceC.o obj/recurrence.o obj/mcfm.o obj/usercode
mv mcfm Bin/
 ----> MCFM compiled with its own PDFs only <--- ----> MCFM compiled with histogram output only <---[esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6%</pre>

Generator MCFM: Structure

The directory structure of the installation is as follows:

• Doc. The source for this document.

• *Bin*. The directory containing the executable mcfm, and various essential files – notably the options file input.DAT.

- *Bin/Pdfdata*. The directory containing the PDF data-files.
- *obj*. The object files produced by the compiler.
- *src*. The Fortran source files in various subdirectories.
- *QCDLoop*. The source files to version 1.9 of the Fortran library QCDLoop. The location of these libraries is set in the makefile (by QLDIR and FFDIR) and may be changed to reflect existing installations if desired.

```
[esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6% 11
total 131
drwxr-xr-x 3 esoldato zp 2048 Dec 2 00:14 Bin
drwxr-xr-x 2 esoldato zp 2048 Dec 2 00:06 Doc
-rwxr-xr-x 1 esoldato zp 1795 Feb 23 2013 Instal1
-rw-r--r-- 1 esoldato zp 31660 Dec 2 00:06 makefile
-rw-r--r-- 1 esoldato zp 31596 Mar 29 2013 makefile.orig
drwxr-xr-x 2 esoldato zp 53248 Dec 2 00:13 obj
drwxr-xr-x 5 esoldato zp 2048 Dec 2 00:07 QCDLoop
-rw-r--r-- 1 esoldato zp 2652 Mar 29 2013 README
drwxr-xr-x 81 esoldato zp 4096 Dec 2 00:03 src
drwxr-xr-x 6 esoldato zp 2048 Dec 2 00:03 TensorReduction
[esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/MCFM-6.6%
```

Generator MCFM: Run

To start the mcfm generator you should be in *Bin* folder and execute: *./mcfm [mydir] [myfile.DAT]* By default you'll use *input.DAT* in the same folder as a config file.

input.DAT – file, which contains all main settings

Each parameter in the input file is specified by a line such as *value* [parameter] and we will give a description of all the parameters below, together with valid and/or sensible inputs for value.

• **file version number**. This should match the version number that is printed when mcfm is executed.

• **nevtrequested**. The default for this parameter is -1 and for the following three parameters it is .false.. This corresponds to the usual mode of operation where the program produces a cross section and a selection of histograms. It is possible to generate n-tuples instead of histograms, as well as unweighted events, for some processes.

Generator MCFM: Settings

• **creategrid**. Flag to control whether or not to write out a grid file suitable for further processing by APPLgrid. Please contact the APPLgrid authors for further information.

• writetop. Flag to control whether or not a Topdrawer histogram output file is produced. Please refer to Section 6 for further details.

• writedat. Flag to control whether or not the plain histogram output file is produced. Please refer to Section 6 for further details.

- writegnu. Flag to control whether or not a gnuplot histogram output file is produced. Please refer to Section 6 for further details.
- writeroot. Flag to control whether or not a ROOT script for plotting histograms is produced. Please refer to Section 6 for further details.
- writepwg. Flag to control whether a powheg-style analysis file is produced. This option is available only for a limited number of processes.

As currently implemented it should be viewed as a development tool, not yet fully supported for the general user.

• **nproc**. The process to be studied is given by choosing a process number, according to Table 9 in Appendix B. f(pi) denotes a generic partonic jet. Processes denoted as "LO" may only be calculated in the Born approximation. For photon processes, "NLO+F" signifies that the calculation may be performed both at NLO and also including the effects of photon fragmentation and experimental isolation.

Generator MCFM: Settings II

• part. This parameter has 5 possible values, described below:

- *lord*. The calculation is performed at leading order only.

 virt. Virtual (loop) contributions to the next-to-leading order result are calculated (+counterterms to make them finite), including also the lowest order contribution.

12

– real. In addition to the loop diagrams calculated by virt, the full next-to-leading order results must include contributions from diagrams involving real gluon emission (-counterterms to make them finite). Note that only the sum of the real and the virt contributions is physical.

– tota. For simplicity, the tota option simply runs the virt and real real pieces in series before performing a sum to obtain the full next-to-leading order result. In this case, the number of points specified by ncall1 and ncall2 is automatically increased when performing the real calculation

Generator MCFM: Settings III

• **runstring**. When MCFM is run, it will write output to several files. The label runstring will be appended to the names of these files.

• sqrts. This is the centre-of-mass energy, Vs of the colliding particles, measured in GeV.

• **ih1, ih2**. The identities of the incoming hadrons may be set with these parameters, allowing simulations for both p⁻p (such as the Tevatron) and pp (such as the LHC). Setting ih1 equal to +1 corresponds to a proton, whilst -1 corresponds to an anti-proton. Values greater than 1000d0 represent a nuclear collision, as described in Section 5.

• **hmass**. For processes involving the Higgs boson, this parameter should be set equal to the putative value of MH.

scale. This parameter may be used to adjust the value of the *renormalization* scale. This is the scale at which αS is evaluated and will typically be set to a mass scale appropriate to the process (MW, MZ, Mt for instance). For processes involving vector bosons, setting this scale to -1d0 chooses a scale equal to the average mass of the bosons involved.

Generator MCFM: Settings IV

• itmx1, itmx2. The program will perform two runs of VEGAS - once for pre-conditioning and then the final run to collect the total crosssection and fill histograms. The number of sweeps for each run is given by itmx1 (pre-conditioning) and itmx2 (final). The default value for both is 10.

• ncall1, ncall2. For every sweep of VEGAS, the number of events generated will be ncall1 in the pre-conditioning stage and ncall2 in the final run. The number of events required depends upon a number of factors. The error estimate on a total cross-section will often be reasonable for a fairly small number of events, whereas accurate histograms will require a longer run.

• **pdlabel**. The choice of parton distribution is made by inserting the appropriate 7-character code from Table 3 or 4 here. As mentioned above, this also sets the value of α S(MZ).

• NGROUP, NSET. These integers choose the parton distribution functions to be used when using the PDFLIB package.

• LHAPDF group, LHAPDF set. These choose the parton distribution functions to be used when using the LHAPDF package – the group is specified by a character string and the set by an integer.

Generator MCFM: Settings V (jets)

• **inclusive**. This logical parameter chooses whether the calculated cross-section should be inclusive in the number of jets found at NLO. An *exclusive cross-section contains the same number of jets at nextto*-leading order as at leading order. An *inclusive cross-section may* instead contain an extra jet at NLO.

• algorithm. This specifies the jet-finding algorithm that is used, and can take the values ktal (for the Run II kT -algorithm), ankt (for the "anti-kT" algorithm [6]), cone (for a midpoint cone algorithm), hqrk (for a simplified cone algorithm designed for heavy quark processes) and none (to specify no jet clustering at all). The latter option is only a sensible choice when the leading order cross-section is well-defined without any jet definition: e.g. the single top process, $q^-q' \rightarrow t^-b$, which is finite as pT (^-b) $\rightarrow 0$.

ptjet min, |etajet| min, |etajet| max. These specify the values of pT,min, |η|min and |η|max for the jets that are found by the algorithm.
Rcut jet. If the final state of the chosen process contains either quarks or gluons then for each event an attempt will be made to form them into jets. For this it is necessary to define q the jet separation R = η2 + φ2 so that after jet combination, all jet pairs are separated by R > Rcut jet.

Generator MCFM: Settings VI (lepton, photon)

• **ptlepton min, |etalepton| max**. These specify the values of pT,min and $|\eta|$ max for one of the leptons produced in the process.

• etalepton veto. This should be specified as a pair of double precision numbers that indicate a rapidity range that should be excluded for the lepton that passes the above cuts.

• **ptmin missing**. Specifies the minimum missing transverse momentum (coming from neutrinos).

• **frag**. This parameter is a logical variable that determines whether the production of photons by a parton fragmentation process is included.

• ptmin photon. This specifies the value of pmin

T for the photon with the

largest transverse momentum. Note that this cut, together with all the photon cuts specified in this section of the input file, are applied even if makecuts is set to .false..

• etamax photon. This specifies the value of |y|max for any photons produced in the process.

• **R(photon,lept) min**. Using the usual definition of R, this requires that all photon-lepton pairs are separated by R > R(photon,lept) min. This parameter must be non-zero for processes in which photon radiation from leptons is included.

Generator MCFM: processes

nproc	$f(p_1) + f(p_2) \rightarrow \dots$	Order
1	$W^+(\to \nu(p_3) + e^+(p_4))$	NLO
6	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4))$	NLO
11	$W^+(\to \nu(p_3) + e^+(p_4)) + f(p_5)$	NLO
12	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{b}(p_5)$	NLO
13	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$	NLO
14	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$ [massless]	LO
16	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + f(p_5)$	NLO
17	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5)$	NLO
18	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + c(p_5)$	NLO
19	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + c(p_5)$ [massless]	LO
20	$W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6)$ [massive]	NLO
21	$W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6)$	NLO
22	$W^+(\to \nu(p_3) + e^+(p_4)) + f(p_5) + f(p_6)$	NLO
23	$W^+(\to \nu(p_3) + e^+(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
24	$W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$	LO
25	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$ [massive]	NLO
26	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$	NLO
27	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6)$	NLO
28	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
29	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$	LO
31	$Z^0(\to e^-(p_3) + e^+(p_4))$	NLO
32	$Z^0(\rightarrow 3 \times (\nu(p_3) + \overline{\nu}(p_4)))$	NLO
33	$Z^0(\to b(p_3) + \overline{b}(p_4))$	NLO
34	$Z^0(\rightarrow 3 \times (d(p_5) + \overline{d}(p_6)))$	NLO
35	$Z^0(\to 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
36	$Z \to t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to \bar{b}(p_6) + e^-(p_7) + \bar{\nu}(p_8))$	LO
41	$Z^0(\to e^-(p_3) + e^+(p_4)) + f(p_5)$	NLO
42	$Z_0(\to 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + f(p_5)$	NLO
43	$Z^0(\to b(p_3) + \overline{b}(p_4)) + f(p_5)$	NLO
44	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6})$	NLO
45	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6}) + f(p_{7})$	LO
46	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4})) + f(p_{5}) + f(p_{6})$	NLO
47	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4})) + f(p_{5}) + f(p_{6}) + f(p_{7})$	LO
50	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \bar{b}(p_{5}) + b(p_{6})$ [massive]	LO
51	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \overline{b}(p_{6})$	NLO
52	$Z_0(\to 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + b(p_5) + \bar{b}(p_6)$	NLO
53	$Z^0(\rightarrow b(p_3) + \overline{b}(p_4)) + b(p_5) + \overline{b}(p_6)$	NLO
54	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \overline{b}(p_{6}) + f(p_{7})$	LO

56	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + c(p_{5}) + \bar{c}(p_{6})$	NLO
61	$W^+(\to \nu(p_3) + e^+(p_4)) + W^-(\to e^-(p_5) + \bar{\nu}(p_6))$	NLO
62	$W^+(\to \nu(p_3) + e^+(p_4)) + W^-(\to q(p_5) + \bar{q}(p_6))$	NLO
63	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^-(\rightarrow q(p_5) + \overline{q}(p_6))$ [rad.in.dk]	NLO
64	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4))W^{+}(\to q(p_5) + \bar{q}(p_6))$	NLO
65	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4))W^+(\rightarrow q(p_5) + \bar{q}(p_6))[\text{rad.in.dk}]$	NLO
66	$W^+(\to \nu(p_3) + e^+(p_4)) + W^-(\to e^-(p_5) + \bar{\nu}(p_6)) + f(p_7)$	LO
69	$W^+(\to \nu(p_3) + e^+(p_4)) + W^-(\to e^-(p_5) + \bar{\nu}(p_6))$ [no pol]	LO
71	$W^+(\to \nu(p_3) + \mu^+(p_4)) + Z^0(\to e^-(p_5) + e^+(p_6))$	NLO
72	$W^+(\to \nu(p_3) + \mu^+(p_4)) + Z^0(\to 3 \times (\nu_e(p_5) + \bar{\nu}_e(p_6)))$	NLO
73	$W^+(\to \nu(p_3) + \mu^+(p_4)) + Z^0(\to b(p_5) + \overline{b}(p_6))$	NLO
74	$W^+(\to \nu(p_3) + \mu^+(p_4)) + Z^0(\to 3 \times (d(p_5) + \bar{d}(p_6)))$	NLO
75	$W^+(\to \nu(p_3) + \mu^+(p_4)) + Z^0(\to 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
76	$W^{-}(\to \mu^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\to e^{-}(p_5) + e^{+}(p_6))$	NLO
77	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\to 3 \times (\nu_e(p_5) + \bar{\nu}_e(p_6)))$	NLO
78	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\to b(p_5) + \bar{b}(p_6))_{-}$	NLO
79	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\to 3 \times (d(p_5) + \bar{d}(p_6)))$	NLO
80	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\to 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
81	$Z^{0}(\rightarrow \mu^{-}(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))$	NLO
82	$Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\to 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))$	NLO
83	$Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\to b(p_{5}) + \bar{b}(p_{6}))$	NLO
84	$Z^{0}(\to b(p_{3}) + \bar{b}(p_{4})) + Z^{0}(\to 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))$	NLO
85	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6}))) + f(p_{7})$	LO
86	$Z^{0}(\rightarrow \mu^{-}(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))$ [no gamma*]	NLO
87	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))[\text{no gamma}^{*}]$	NLO
88	$Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\to b(p_{5}) + \bar{b}(p_{6}))$ [no gamma*]	NLO
89	$Z^{0}(\to b(p_{3}) + \bar{b}(p_{4})) + Z^{0}(\to 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))$ [no gamma*]	NLO
90	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))$	NLO
91	$W^+(\to \nu(p_3) + e^+(p_4)) + H(\to b(p_5) + \bar{b}(p_6))$	NLO
92	$W^+(\to \nu(p_3) + e^+(p_4)) + H(\to W^+(\nu(p_5), e^+(p_6))W^-(e^-(p_7), \bar{\nu}(p_8)))$	NLO
93	$W^+(\to \nu(p_3) + e^+(p_4)) + H(\to Z(e^-(p_5), e^+(p_6)) + Z(\mu^-(p_7), \mu(p_8)))$	NLO
94	$W^+(\to\nu(p_3)+e^+(p_4))+H(\to\gamma(p_5)+\underline{\gamma}(p_6)$	NLO
96	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + H(\to b(p_5) + \bar{b}(p_6))$	NLO
97	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + H(\rightarrow W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \bar{\nu}(p_{8})))$	NLO
98	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + H(\rightarrow Z(e^{-}(p_5), e^{+}(p_6)) + Z(\mu^{-}(p_7), \mu^{+}(p_8)))$	NLO
99	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + H(\to \gamma(p_5) + \gamma(p_6))$	NLO

Generator MCFM: processes II

101	$Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + H(\to b(p_{5}) + \bar{b}(p_{6}))$	NLO
102	$Z^{0}(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + H(\rightarrow b(p_5) + \bar{b}(p_6))$	NLO
103	$Z^{0}(\rightarrow b(p_{3}) + \overline{b}(p_{4})) + H(\rightarrow b(p_{5}) + \overline{b}(p_{6}))$	NLO
104	$Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + H(\to \gamma(p_{5}) + \gamma(p_{6}))$	NLO
105	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \overline{\nu}(p_{4}))) + H(\rightarrow \gamma(p_{5}) + \gamma(p_{6}))$	NLO
106	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + H(\rightarrow W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \bar{\nu}(p_{8})))$	NLO
107	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + H(\rightarrow W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \bar{\nu}(p_{8})))$	NLO
108	$Z^{0}(\rightarrow b(p_{3}) + \overline{b}(p_{4})) + H(\rightarrow W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \overline{\nu}(p_{8})))$	NLO
109	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + H(\rightarrow Z(e^{-}(p_{5}), e^{+}(p_{6})) + Z(\mu^{-}(p_{7}), \mu^{+}(p_{8})))$	NLO
111	$H(\rightarrow b(p_3) + \overline{b}(p_4))$	NLO
112	$H(\rightarrow \tau^{-}(p_3) + \tau^{+}(p_4))$	NLO
113	$H(\rightarrow W^+(\nu(p_3) + e^+(p_4)) + W^-(e^-(p_5) + \bar{\nu}(p_6)))$	NLO
114	$H(\rightarrow W^+(\nu(p_3) + e^+(p_4)) + W^-(q(p_5) + \bar{q}(p_6)))$	NLO
115	$H(\rightarrow W^+(\nu(p_3) + e^+(p_4)) + W^-(q(p_5) + \bar{q}(p_6)))[rad.in.dk]$	NLO
116	$H(\to Z^0(\mu^-(p_3) + \mu^+(p_4)) + Z^0(e^-(p_5) + e^+(p_6))$	NLO
117	$H(\rightarrow Z^0(3 \times (\nu(p_3) + \bar{\nu}(p_4))) + Z^0(e^-(p_5) + e^+(p_6))$	NLO
118	$H(\to Z^0(\mu^-(p_3) + \mu^+(p_4)) + Z^0(b(p_5) + \overline{b}(p_6))$	NLO
119	$H(\rightarrow \gamma(p_3) + \gamma(p_4))$	NLO
120	$H(\to Z^0(\mu^-(p_3) + \mu^+(p_4)) + \gamma(p_5))$	NLO
121	$H(\rightarrow Z^0(3 \times (\nu(p_3) + \bar{\nu}(p_4)))) + \gamma(p_5))$	NLO
126	$H(\to W^+(\nu(p_3) + e^+(p_4)) + W^-(e^-(p_5) + \bar{\nu}(p_6)))$ [top, bottom loops, exact]	LO
127	$H(\to W^+(\nu(p_3) + e^+(p_4)) + W^-(e^-(p_5) + \bar{\nu}(p_6)))[+ \text{ interf. with } gg \to WW]$	LO
131	$H(\to b(p_3) + \bar{b}(p_4)) + \bar{b}(p_5)(+g(p_6))$	NLO
132	$H(\to b(p_3) + \bar{b}(p_4)) + \bar{b}(p_5)(+\bar{b}(p_6))$	(REAL)
133	$H(\rightarrow b(p_3) + \bar{b}(p_4)) + b(p_5) + \bar{b}(p_6)$ [both observed]	(REAL)
141	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\to b \ (p_6) + e^-(p_7) + \overline{\nu}(p_8))$	NLO
142	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\to b \ (p_6) + e^-(p_7) + \overline{\nu}(p_8))$ [rad.in.dk]	NLO
143	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\rightarrow b \ (p_6) + e^-(p_7) + \overline{\nu}(p_8)) + f(p_9)$	LO
144	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\to b \ (p_6) + e^-(p_7) + \overline{\nu}(p_8)) \ (\text{uncorr})$	NLO
145	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.dk],uncorr	NLO
146	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + q(p_7) + \bar{q}(p_8))$	NLO
147	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\to b \ (p_6) + q(p_7) + \overline{q}(p_8))$ [rad.in.top.dk]	NLO
148	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + q(p_7) + \bar{q}(p_8)) \ [rad.in.W.dk]$	NLO
149	$t(\to q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$	NLO
150	$t(\to q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.top.dk]	NLO
151	$t(\to q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.W.dk]	NLO

157	$t\bar{t}$ [for total Xsect]	NLO
158	$b\bar{b}$ [for total Xsect]	NLO
159	$c\bar{c}$ [for total Xsect]	NLO
160	$t\bar{t} + g$ [for total Xsect]	LO
161	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)$ [t-channel]	NLO
162	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[\text{decay}]$	NLO
163	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)$ [t-channel] $mb > 0$	NLO
166	$\overline{t}(\rightarrow e^-(p_3) + \overline{\nu}(p_4) + \overline{b}(p_5)) + q(p_6)$ [t-channel]	NLO
167	$\overline{t}(\rightarrow e^-(p_3) + \overline{\nu}(p_4) + \overline{b}(p_5)) + q(p_6)[\text{rad.in.dk}]$	NLO
168	$\overline{t}(\rightarrow e^{-}(p_3) + \overline{\nu}(p_4) + \overline{b}(p_5)) + q(p_6)[\text{t-channel}]mb > 0$	NLO
171	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{b}(p_6))$ [s-channel]	NLO
172	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{b}(p_6))[\text{decay}]$	NLO
176	$\overline{t}(\rightarrow e^-(p_3) + \overline{\nu}(p_4) + \overline{b}(p_5)) + b(p_6))$ [s-channel]	NLO
177	$\overline{t}(\rightarrow e^-(p_3) + \overline{\nu}(p_4) + \overline{b}(p_5)) + b(p_6))$ [rad.in.dk]	NLO
180	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + t(p_5)$	NLO
181	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^{+}(p_6) + b(p_7))$	NLO
182	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^{+}(p_6) + b(p_7))$ [rad.in.dk]	NLO
183	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^{+}(p_6) + b(p_7)) + b(p_8)$	LO
184	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(p_5) + b(p_6)$ [massive b]	LO
185	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{t}(p_5)$	NLO
186	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7))$	NLO
187	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)[\text{rad.in.dk}]$	NLO

Generator MCFM: processes III

909		
202	$H(\to \tau^-(p_3) + \tau^+(p_4)) + f(p_5)$ [full mt dep.]	LO
203	$H(\to b(p_3) + \overline{b}(p_4)) + f(p_5)$	NLO
204	$H(\to \tau^-(p_3) + \tau^+(p_4)) + f(p_5)$	NLO
206	$A(\rightarrow b(p_3) + \overline{b}(p_4)) + f(p_5)$ [full mt dep.]	LO
207	$A(\to \tau^-(p_3) + \tau^+(p_4)) + f(p_5)$ [full mt dep.]	LO
208	$H(\rightarrow W^+(\nu(p_3), e^+(p_4))W^-(e^-(p_5), \bar{\nu}(p_6))) + f(p_7)$	NLO
209	$H(\to Z^+(e^-(p_3), e^+(p_4))Z(\mu^-(p_5), \mu^+(p_6))) + f(p_7)$	NLO
210	$H(\rightarrow \gamma(p_3) + \gamma(p_4)) + f(p_5)$	NLO
211	$H(\to b(p_3) + \bar{b}(p_4)) + f(p_5) + f(p_6)[\text{WBF}]$	NLO
212	$H(\to \tau^-(p_3) + \tau^+(p_4)) + f(p_5) + f(p_6)[\text{WBF}]$	NLO
213	$H(\rightarrow W^+(\nu(p_3), e^+(p_4))W^-(e^-(p_5), \bar{\nu}(p_6))) + f(p_7) + f(p_8)[WBF]$	NLO
214	$H(\rightarrow Z(e^{-}(p_3), e^{+}(p_4)) + Z(\mu^{-}(p_5), \mu^{+}(p_6))) + f(p_7) + f(p_8)[WBF]$	NLO
215	$H(\rightarrow \gamma(p_3) + \gamma(p_4)) + f(p_5) + f(p_6)[\text{WBF}]$	NLO
216	$H(\to b(p_3) + \overline{b}(p_4)) + f(p_5) + f(p_6) + f(p_7)[WBF+jet]$	LO
217	$H(\to \tau^-(p_3) + \tau^+(p_4)) + f(p_5) + f(p_6) + f(p_7)[WBF+jet]$	LO
221	$\tau^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}_e(p_4) + \nu_{\tau}(p_5)) + \tau^{+}(\rightarrow \bar{\nu}_{\tau}(p_6) + \nu_e(p_7) + e^{+}(p_8))$	LO
231	$t(p_3) + \overline{b}(p_4) + q(p_5)$ [t-channel]	NLO
232	$t(p_3) + \bar{b}(p_4) + q(p_5) + q(p_6)$ [t-channel]	LO
233	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6) + q(p_7)$ [t-channel]	NLO
234	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6) + q(p_7)$ [t-channel, rad.in.dk]	NLO
235	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6) + q(p_7) + f(p_8)$ [t-channel]	LO
236	$\overline{t}(p_3) + b(p_4) + q(p_5)$ [t-channel]	NLO
237	$\bar{t}(p_3) + b(p_4) + q(p_5) + q(p_6)$ [t-channel]	LO
238	$\bar{t}(\to e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6) + q(p_7)$ [t-channel]	NLO
239	$\overline{t}(\rightarrow e^-(p_3) + \overline{\nu}(p_4) + \overline{b}(p_5)) + b(p_6) + q(p_7)$ [t-channel, rad.in.dk]	NLO
240	$\bar{t}(\to e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6) + q(p_7) + f(p_8)$ [t-channel]	LO
251	$W^+(\to \nu(p_3) + e^+(p_4)) + W^+(\to \nu(p_5) + e^+(p_6)) + f(p_7) + f(p_8)$	LO
252	$W^+(\to \nu(p_3) + e^+(p_4)) + W^+(\to \nu(p_5) + e^+(p_6)) + f(p_7) + f(p_8) + f(p_9)$	LO
253	$W^+(\to \nu(p_3) + e^+(p_4)) + Z(> e^-(p_5) + e^+(p_6)) + f(p_7) + f(p_8)$	LO
254	$W^{-}(>e^{-}(p_3)+\bar{\nu}(p_4))+Z(>e^{-}(p_5)+e^{+}(p_6))+f(p_7)+f(p_8)$	LO
255	$W^{+}(>\nu(p_{3})+e^{+}(p_{4}))+Z(>e^{-}(p_{5})+e^{+}(p_{6}))+b(p_{7})+f(p_{8})$	LO
256	$W^{-}(>e^{-}(p_3)+\bar{\nu}(p_4))+Z(>e^{-}(p_5)+e^{+}(p_6))+b(p_7)+f(p_8)$	LO
259	$W^{+}(>\nu(p_{3})+e^{+}(p_{4}))+Z(>e^{-}(p_{5})+e^{+}(p_{6}))+b(p_{7})+b(p_{8})$	LO
260	$W^{-}(>e^{-}(p_3)+\bar{\nu}(p_4))+Z(>e^{-}(p_5)+e^{+}(p_6))+b(p_7)+b(p_8)$	LO
261	$Z^0(\to e^-(p_3) + e^+(p_4)) + b(p_5)$	NLO
262	$Z^0(\to e^-(p_3) + e^+(p_4)) + c(p_5)$	NLO
263	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + b(p_{6})[1 \text{ b-tag}]$	LO
264	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \bar{c}(p_{5}) + c(p_{6})[1 \text{ c-tag}]$	LO
266	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5})(4+b(p_{6}))$	NLO
	(70) $()$ $()$ $()$ $()$ $()$	I NT O
	232 233 234 235 236 237 238 239 240 251 252 253 254 255 256 259	$\begin{array}{ll} 232 & t(p_3) + b(p_4) + q(p_5) + q(p_6) \ \text{t-channel} \\ 233 & t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6) + q(p_7) \ \text{t-channel} \\ 234 & t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6) + q(p_7) \ \text{t-channel} \\ 235 & t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6) + q(p_7) + f(p_8) \ \text{t-channel} \\ 236 & \bar{t}(p_3) + b(p_4) + q(p_5) \ \text{t-channel} \\ 237 & \bar{t}(p_3) + b(p_4) + q(p_5) + q(p_6) \ \text{t-channel} \\ 238 & \bar{t}(\rightarrow e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6) + q(p_7) \ \text{t-channel} \\ 239 & \bar{t}(\rightarrow e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6) + q(p_7) \ \text{t-channel} \\ 240 & \bar{t}(\rightarrow e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6) + q(p_7) + f(p_8) \ \text{t-channel} \\ 251 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^+(\rightarrow \nu(p_5) + e^+(p_6)) + f(p_7) + f(p_8) \ \text{t-channel} \\ 252 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^+(\rightarrow \nu(p_5) + e^+(p_6)) + f(p_7) + f(p_8) \ \text{t-f}(p_8) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + f(p_7) + f(p_8) \ \text{t-channel} \\ 254 & W^-(>e^-(p_3) + \bar{\nu}(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + f(p_7) + f(p_8) \ \text{t-channel} \\ 255 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + f(p_8) \ \text{t-channel} \\ 256 & W^-(>e^-(p_3) + \bar{\nu}(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + f(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + f(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + f(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + b(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + b(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + b(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + b(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + b(p_8) \ \text{t-channel} \\ 259 & W^+(-\rightarrow \nu(p_3) + e^+(p_4)) + Z(>e^-(p_5) + e^+(p_6)) + b(p_7) + b(p_8) \ \text{t-channe} \\ 250 & W^+(-\rightarrow \nu(p_3) + e^+$

270	$H(\gamma(p_3) + \gamma(p_4)) + f(p_5) + f(p_6)$ [in heavy top limit]	NLO
271	$H(b(p_3) + \overline{b}(p_4)) + f(p_5) + f(p_6)$ [in heavy top limit]	NLO
272	$H(\tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5) + f(p_6)$ [in heavy top limit]	NLO
273	$H(\rightarrow W^+(\nu(p_3), e^+(p_4))W^-(e^-(p_5), \bar{\nu}(p_6))) + f(p_7) + f(p_8)$	NLO
274	$H(\rightarrow Z(e^{-}(p_3), e^{+}(p_4))Z(\mu^{-}(p_5), \mu^{+}(p_6))) + f(p_7) + f(p_8)$	NLO
275	$H(b(p_3) + \overline{b}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ [in heavy top limit]	LO
276	$H(\tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ [in heavy top limit]	LO
278	$H(\rightarrow W^+(\nu(p_3), e^+(p_4))W^-(e^-(p_5), \bar{\nu}(p_6))) + f(p_7) + f(p_8) + f(p_9)$	LO
279	$H(\rightarrow Z(e^{-}(p_3), e^{+}(p_4))Z(\mu^{-}(p_5), \mu^{+}(p_6))) + f(p_7) + f(p_8) + f(p_9)$	LO
280	$\gamma(p_3) + f(p_4)$	NLO+F
282	$f(p_1) + f(p_2) \to \gamma(p_3) + f(p_4) + f(p_5)$	LO
283	$f(p_1) + f(p_2) \to \gamma(p_3) + b(p_4)$	LO
284	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + c(p_4)$	LO
285	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + \gamma(p_4)$	NLO+F
286	$f(p_1) + f(p_2) \to \gamma(p_3) + \gamma(p_4) + f(p_5)$	LO
290	$W^+(\to \nu(p_3) + e^+(p_4)) + \gamma(p_5)$	NLO+F
292	$W^+(\to \nu(p_3) + e^+(p_4)) + \gamma(p_5) + f(p_6)$	LO
295	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + \gamma(p_5)$	NLO+F
297	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + \gamma(p_5) + f(p_6)$	LO
300	$Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5})$	NLO+F
301	$Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6})$	NLO +F
302	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6})$	NLO + F
303	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7})$	LO
304	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6}) + f(p_{7})$	LO
305	$Z^{0}(\rightarrow 3(\nu(p_3) + \bar{\nu}(p_4))) + \gamma(p_5)$	NLO + F
306	$Z^{0}(\rightarrow 3(\nu(p_3) + \bar{\nu}(p_4))) + \gamma(p_5) + \gamma(p_6)$	NLO + F
307	$Z^{0}(\to 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + f(p_{6})$	NLO + F
308	$Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7})$	LO
309	$Z^{0}(\to 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + f(p_{6}) + f(p_{7})$	LO
311	$f(p_1) + b(p_2) \to W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$	LO
316	$f(p_1) + b(p_2) \to W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + f(p_6)$	LO
321	$f(p_1) + c(p_2) \to W^+(\to \nu(p_3) + e^+(p_4)) + c(p_5) + f(p_6)$	LO
326	$f(p_1) + c(p_2) \to W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + c(p_5) + f(p_6)$	LO
331	$W^+(\to \nu(p_3) + e^+(p_4)) + c(p_5) + f(p_6)$ [c-s interaction]	LO
336	$W^-(\rightarrow e^-(p_3) + \overline{\nu}(p_4)) + c(p_5) + f(p_6)$ [c-s interaction]	LO
341	$f(p_1) + b(p_2) \to Z^0(\to e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6)[+f(p_7)]$	NLO
342	$f(p_1) + b(p_2) \to Z^0(\to e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6)[+\bar{b}(p_7)]$	(REAL)
346	$f(p_1) + b(p_2) \to Z^0(\to e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6) + f(p_7)$	LO
347	$f(p_1) + b(p_2) \to Z^0(\to e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6) + \overline{b}(p_7)$	LO

Generator MCFM: processes IV

351	$f(p_1) + c(p_2) \to Z^0 (\to e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+f(p_7)]$
352	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+\bar{c}(p_7)]$
356	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + f(p_7)$
357	$f(p_1) + c(p_2) \to Z^0(\to e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + \bar{c}(p_7)$
361	$c(p_1) + \overline{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))[\text{mc}=0 \text{ in NLO}]$
362	$c(p_1) + \overline{s}(p_2) \to W^+(\to \nu(p_3) + e^+(p_4))$ [massless corrections only]
363	$c(p_1) + \overline{s}(p_2) \to W^+(\to \nu(p_3) + e^+(p_4))$ [massive charm in real]
401	$W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS]
402	$W^+(\to \nu(p_3) + e^+(p_4)) + (b + \bar{b})(p_5)$ [1 or 2 jets, 4FNS]
403	$W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6)$ [2 or 3 jets, 4FNS]
406	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5})$ [1,2 or 3 jets, 4FNS]
407	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + (b + \bar{b})(p_{5})$ [1 or 2 jets, 4FNS]
408	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$ [2 or 3 jets, 4FNS]
411	$f(p_1) + b(p_2) \to W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$ [5FNS]
416	$f(p_1) + b(p_2) \to W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + f(p_6)$ [5FNS]
421	$W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS+5FNS]
426	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5})$ [1,2 or 3 jets, 4FNS+5FNS]
431	$W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7) \text{ [massive]}$
436	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7) \text{ [massive]}$
500	$W^+(\to \nu(p_3) + e^+(p_4)) + t(p_5) + \bar{t}(p_6)$ [massive]
501	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$
502	$ t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^+(\nu(p_9), \mu^+(p_{10})) [rad.in.dk]$
503	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + q(p_7) + q \ (p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$
506	$t(\to q(p_3) + q(p_4) + b(p_5)) + \overline{t}(\to b(p_6) + e^-(p_7) + \overline{\nu}(p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$
510	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + t(p_5) + \bar{t}(p_6)$ [massive]
511	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$
512	$ t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\to b \ (p_6) + e^-(p_7) + \overline{\nu}(p_8)) + W^-(\mu^-(p_9), \overline{\nu}(p_{10})) [rad.in.dk]$
513	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + q(p_7) + q \ (p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$
516	$t(\to q(p_3) + q(p_4) + b(p_5)) + \bar{t}(\to b(p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$
529	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + t(p_{5}) + \bar{t}(p_{6})$
530	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to e^-(p_7) + \bar{\nu}(p_8) + b \ (p_6)) + Z(e^-(p_9), e^+(p_{10}))$
531	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to e^-(p_7) + \bar{\nu}(p_8) + b\ (p_6)) + Z(b(p_9), b\ (p_{10}))$
532	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to q(p_7) + \bar{q}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$
533	$t(\to q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\to e^-(p_7) + \bar{\nu}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$

I	540	$H(b(p_3) + b(p_4)) + t(p_5) + q(p_6)$	N
I	541	$H(b(p_3) + \overline{b}(p_4)) + \overline{t}(p_5) + q(p_6)$	N
I	544	$H(b(p_3) + \overline{b}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + q(p_9)$	N
I	547	$H(b(p_3) + \overline{b}(p_4)) + \overline{t}(e^-(p_5) + \overline{\nu}(p_6) + b(p_7)) + q(p_9)$	N
Ì	550	$H(\gamma(p_3) + \gamma(p_4)) + t(p_5) + q(p_6)$	N
I	551	$H(\gamma(p_3) + \gamma(p_4)) + \bar{t}(p_5) + q(p_6)$	N
I	554	$H(\gamma(p_3) + \gamma(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + q(p_9)$	N
I	557	$H(\gamma(p_3) + \gamma(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + b(p_7)) + q(p_9)$	Ν
Ì	560	$Z(e - (p_3) + e + (p_4)) + t(p_5) + q(p_6)$	Ν
l	561	$Z(e - (p_3) + e + (p_4)) + \overline{t}(p_5) + q(p_6)$	Ν
I	562	$Z(e - (p_3) + e + (p_4)) + t(p_5) + q(p_6) + f(p_7)$	Ι
l	563	$Z(e - (p_3) + e + (p_4)) + \overline{t}(p_5) + q(p_6) + f(p_7)$	Ι
	564	$Z(e - (p_3) + e + (p_4)) + t(> \nu(p_5) + e^+(p_6) + b(p_7)) + q(p_8)$	Ν
I	566	$Z(e - (p_3) + e + (p_4)) + t(> \nu(p_5) + e^+(p_6) + b(p_7)) + q(p_8) + f(p_9)$	Ι
l	567	$Z(e - (p_3) + e + (p_4)) + \overline{t}(> e^-(p_5) + \overline{\nu}(p_6) + \overline{b}(p_7)) + q(p_8)$	Ν
	569	$Z(e - (p_3) + e + (p_4)) + \overline{t}(> e^-(p_5) + \overline{\nu}(p_6) + \overline{b}(p_7)) + q(p_8) + f(p_9)$	Ι
ĺ	640	$t(p_3) + \overline{t}(p_4) + H(p_5)$	Ι
I	641	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\to \overline{\nu}(p_7) + e^-(p_8) + \overline{b}(p_6)) + H(b(p_9) + \overline{b}(p_{10}))$	Ι
I	644	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to \bar{q}(p_7) + q(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	I
l	647	$t(\to q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\to \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	Ι
	651	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	Ι
I	654	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to \bar{q}(p_7) + q(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	I
I	657	$t(\to q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\to \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	Ι
I	661	$t(\to\nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\to\overline{\nu}(p_7) + e^-(p_8) + \overline{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	Ι
	664	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to \bar{q}(p_7) + q(p_8) + \bar{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	Ι
l	667	$t(\to q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t} \to (\bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	Ι
ſ	800	$V \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Vector Mediator]	Ν
l	801	$A \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Axial Vector Mediator]	Ν
I	802	$S \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Scalar Mediator]	N
I	803	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Pseudo Scalar Mediator]	Ν
I	804	$GG \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Gluonic DM operator]	N
Į	805	$S(\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Scalar Mediator, mt loops]	Ν
I	820	$V \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Vector Mediator]	N
I	821	$A \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Axial Vector Mediator]	N
	822	$S \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Scalar Mediator]	N
ļ	823	$PS \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Pseudo Scalar Mediator]	Ν
	840	$V \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Vector Mediator]	Ι
l	841	$A \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Axial Vector Mediator]	Ι
I	842	$S \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Scalar Mediator]	I
	843	$PS \to (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)7 + f(p_6)$ [Pseudo Scalar Mediator]	I
ļ	844	$GG \to (\chi(p_3) + \overline{\chi}(p_4)) + f(p_5) + f(p_6)$ [Gluonic DM operator]	I
I	845	$V \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Vector Mediator]	I
ļ	846	$A \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Axial Vector Mediator]	I
I	847	$S \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Scalar Mediator]	I
ļ	848	$PS \to (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Pseudo Scalar Mediator]	Ι
I	902	Check of Volume of 2 particle phase space	

Generator MCFM: Exercise

Process 300: $pp \rightarrow Z\gamma \rightarrow ee\gamma$ Obtain: $\sigma -?$ σ (PDF= cteq6 l, mstw8nl)-? σ (photonptmin=20GeV,30GeV,40GeV,50GeV,60GeV)-?

LHAPDF package

Package gives a simple possibility to use additional (modern) PDF-sets (parton distribution functions) by generators.

Site: https://lhapdf.hepforge.org/

Use version 5 for installation! 6-th needs more packages to be installed: the Boost C++ utility library (<u>http://www.boost.org</u>) and the yaml-cpp (http://code.google.com/p/yaml-cpp/) parser.

Installation: tar -xvzf lhapdf-**v.r.p**.tar.gz cd lhapdf-**v.r.p** ./configure --prefix=/path/to/directory make make install

However, folder in prefix should not be the same as folder where program has been unpacked (lhapdf-*v.r.p*)

(~5 minutes)

Generator Herwig/Herwig++

Multipurpose generator Herwig

Hadron Emission Reactions With Interfering Gluons

Herwig++ is a general-purpose event generator for the simulation of high-energy lepton-lepton, lepton-hadron and hadron-hadron collisions with special emphasis on the accurate simulation of QCD radiation.

History of this generator starts from full-functional Fortran version.

Fortran Herwig is still under support (last released version is 6.521 – March 2013), however it is not being developed (only bug fixes etc).

From site: "Version 6.5 has always been foreseen as the final Fortran version of HERWIG. The recent sub-version releases are tidying up the last few loose ends." <u>http://www.hep.phy.cam.ac.uk/theory/webber/Herwig/</u>

For serious event generation, HERWIG has been replaced by Herwig++, version 2.4 of which is already available, providing a complete simulation of most types of collider events. This new program is on C++ and it has all features and advanages of old HERWIG.

Currently version 2.7.0 is available on site: https://herwig.hepforge.org/

Let's start from Herwig++!
Generator Herwig++

Herwig++ already includes several features more advanced than the last FORTRAN version. Herwig++ provides a full simulation of high energy collisions with the following special features:

• Initial- and final-state QCD jet evolution taking account of soft gluon interference via angular ordering;

• A detailed treatment of the suppression of QCD radiation from massive particles, the *deadcone* effect;

• The simulation of BSM physics including correlations between the production and decay of the BSM particles together with the ability to add new models by simply encoding the Feynman rules;

• An eikonal model for multiple partonic scatterings to describe the underlying event;

• A cluster model of the hadronization of jets based on non-perturbative gluon splitting;

• A sophisticated model of hadron and tau decays using matrix elements to give the momenta of the decay products for many modes and including a detailed treatment of off-shell effects and spin correlations.

Generator Herwig++: installation

Herwig++ installation includes installation Herwig++ itself and special tool ThePEG (Toolkit for High Energy Physics Event Generation). Herwig++ is based on this tool.

All additional packages can be installed before ThePEG and Herwig configuration. If you need install them afterwards – you should re-configure ThePEG and

Herwig++.

Installation:

ThePEG Download ThePEG, then

tar xjvf ThePEG-*.tar.bz2 cd ThePEG* ./configure --prefix=/path/where/T^{(esoldato@lxplus425)/} make make check make install

ThePEG 1.9.0 configuration summary ase include this information in bug reports! /afs/cern.ch/work/e/esoldato/workarea/herwig/ThePEG-1.9.0 Dimension checks: system LHAPDF: Rivet: no FastJet: no Host: x86 64-unknown-linux-gnu CXX: g++ (GCC) 4.1.2 20080704 (Red Hat 4.1.2-54) -a -02 lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/ThePEG-1.9.0%

[csoldsto@lxplus425]/afs/cern.ch/work/e/csoldsto/workarea/herwig/ThePEG-1.9.0% make Muking all in inclusion

(~20 minutes)

Generator Herwig++: installation II

Herwig++

Download Herwig++, then

tar xjvf Herwig++-*.tar.bz2 cd Herwig++* ./configure --prefix=/path/where/Herwig++/should/be/installed --withthepeg=/path/where/ThePEG/is/installed make make check

make cneck make install

(~1 h 20 m)

config.status: executin	g libtool commands		
config.status: executing summary commands ************************************			
		*** Please include this	information in bug reports!

*** Prefix:	/afs/cern.ch/work/e/esoldato/workarea/herwig/Herwig++-2.7.0		

*** BSM models:	yes		
*** Dipole shower:	yes * warning: LHAPDF disabled *		

*** Herwig debug mode:	no		

*** ThePEG:	/afs/cern.ch/work/e/esoldato/workarea/herwig/ThePEG-1.9.0		
*** ThePEG headers:	/afs/cern.ch/work/e/esoldato/workarea/herwig/ThePEG-1.9.0/include		

*** GSL:	system		
*** boost:	system		
*** Fastjet:	no		

*** Host:	x86_64-unknown-linux-gnu		
*** CC:	gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-54)		
*** CXX:	g++ (GCC) 4.1.2 20080704 (Red Hat 4.1.2-54)		
*** FC:	GNU Fortran (GCC) 4.1.2 20080704 (Red Hat 4.1.2-54)		

*** CXXFLAGS:	-03		

[esoldato@lxplus425]/afs/cern.ch/work/e/esoldato/workarea/herwig/Herwig++-2.7.0% make			
Making all in include			

Generator Herwig++: first run

Create a temporary directory to try out Herwig++, and copy all files ending in .in from the Herwig installation: *mkdir herwigtest cd herwigtest cp \$HERWIGPATH/share/Herwig++/*.in ./*

Run the following command to set up a generator file. This command will be explained further on.

Herwig++ read LEP.in

This should have generated a file LEP.run. It contains a full example setup of a LEP event generator. To run it, try

Herwig++ run LEP.run -N50 -d1

The flag -N specifies the number of events to generate. The flag -d1 enables a more detailed output in LEP.log.

After the run, there should be two new files: LEP.out, which contains an overall cross section, and LEP.log, containing the detailed record of the requested 50 events. The log format is described in detail in <u>EventRecordFormat</u>. Re-running the above command will give the *same* 50 events again unless the seed of the random number generator is changed by specifying the flag -seed NNNNN. If you want to modify generator parameters, you'll need to modify LEP.in and

regenerate LEP.run.

Generator Herwig++: Matrix elements

In Herwig++ the library of matrix elements for QCD and electroweak processes is relatively small, certainly with respect to the large range of processes available in its FORTRAN predecessor. Indeed, the library of Standard Model processes is largely intended to provide a core of important processes with which to test the program.

For e+e- colliders only four hard processes are included:

• Quark-antiquark production, via interfering photon and Z0 bosons, is implemented in the **MEee2gZ2qq** class. No approximation is made regarding the masses of the particles. This process is essential for us to validate the program using QCD analyses of LEP data.

• Dilepton pair production, via interfering photon and Z0 bosons, is implemented in the **MEee2gZ2II** class. No approximation is made regarding the masses of the particles4. This

process is used to check the implementation of spin correlations in τ decays.

• The Bjorken process, Z0h0 production, which is implemented in the **MEee2ZH** class. This process is included as it is very similar to the production of Z0h0 and W±h0 in hadronhadron collisions and uses the same base class for most of the calculation.

• The vector-boson fusion (VBF) processes, $e+e- \rightarrow e+e-h0$ and $e+e- \rightarrow ve^-veh0$, are implemented in the **MEee2HiggsVBF** class.

Generator Herwig++: Matrix elements II

A much wider range of matrix elements is included in the standalone code for the simulation of events in hadron colliders:

• Difermion production via s-channel electroweak gauge bosons. The matrix elements for the production of fermion-antifermion pairs through W± bosons, or interfering photons and Z0 bosons, are implemented in the **MEqq2W2ff** and **MEqq2gZ2ff** classes respectively. Only s-channel electroweak gauge boson diagrams are included for the hadronic modes.

• The production of a Z0 or W± boson in association with a hard jet is simulated using the **MEPP2ZJet** or **MEPP2WJet** class respectively. The decay products of the bosons are included in the $2 \rightarrow 3$ matrix element and the option of including the photon for Z0 production is supported.

• The 2 \rightarrow 2 QCD scattering processes are implemented in the **MEQCD2to2** class. Currently all the particles are treated as massless in these processes.

• The matrix element for the production of a heavy quark-antiquark pair (top or bottom quark pairs), is coded in the **MEPP2QQ** class. No approximations are made regarding the masses of the outgoing q⁻q pair.

• The **MEPP2GammaGamma** class implements the matrix element for the production of prompt photon pairs. In addition to the tree-level $q^-q \rightarrow \gamma\gamma$ process the loop-mediated gg $\rightarrow \gamma\gamma$ process is included.

• Direct photon production in association with a jet is simulated using the **MEPP2GammaJet** class. As with the QCD 2 \rightarrow 2 process all of the particles are treated as massless in these processes.

• The production of an s-channel Higgs boson via both $gg \rightarrow h0$ and $q^-q \rightarrow h0$ is simulated using the **MEPP2Higgs** class.

Etc...

Also some NLO ME are available.

Generator Herwig++: Exercise

Use LHC.in, **MEPP2QQ** matrix element and generate top-antitop pairs. $pp \rightarrow t\bar{t}$

```
σ-?
```

```
σ(PDF=MRST,CTEQ6L)-?
```

Make root output and plot $\theta(top, antitop)$