## Работа З

## РАБОТА С ДЕТЕКТОРОМ ТВТ В РЕЖИМЕ СБОРА ДАННЫХ ЭКСПЕРИМЕНТА ATLAS

**Цель** – это знакомство с современными способами проведения эксперимента, контроля параметров детектора и мониторирование его характеристик в процессе набора данных на примере TRT..

## ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Зайдите на страницу "ATLAS DETECTOR STATUS" по ссылке <u>https://atlasop.cern.ch/dcs/</u> (см. рис. 3.1) Данная страница защищена паролем!



Рис. 3.1

2. Кликните на пункт меню "HISTORY" в верней части страницы.

3. На странице "HISTORY", используя меню в левом верхнем углу, установите дату 01.08.2012 и время 03:11 (см. рис 3.2).



Рис. 3.2

4. Проверьте минимальное и максимальное высокое напряжение HV в центральной части A детектора TRT. (Оно должно быть в диапазоне 1520 < V < 1550 V для смеси Ксенона). Чтобы выполнить задание кликните на "TRT" в вертикальном меню, расположенном в левой части экрана. Во всплывшем меню выберите пункт "BARREL A", далее в новом всплывшем меню выберите пункт "HV". (HVB min =1519 V, HVBmax=1533 V)

5. Проверьте исключенные HV линии в торцевой части A детектора TRT. (должны соответствовать списку исключенных линий см Приложение). Для этого кликните на "TRT" в вертикальном меню, расположенном в левой части экрана. Во всплывшем меню выберите пункт "ENDCAP A", далее в новом всплывшем меню выберите пункт "HV".

6. Проверьте статус линий низкого напряжения LV в FSM дереве в центральной части С детектора TRT. (должны соответствовать списку исключенных линий см Приложение). Выберите "TRT" в вертикальном меню, расположенном в левой части экрана. Во всплывшем меню выберите пункт "BARREL C", далее в новом всплывшем меню выберите пункт "LV".

7. Проверьте минимальную и максимальную температуру в центральной части А детектора TRT. Для этого кликните на "TRT" в вертикальном меню, расположенном в левой части экрана. Во всплывшем меню выберите пункт "BARREL A", далее в новом всплывшем меню выберите пункт "TEMP". 8. На компьютере, используемом для выполнения работы установите переменные окружения:

export ROOTSYS=/opt/mephi/root export PATH=.:\$ROOTSYS/bin:\$PATH export LD\_LIBRARY\_PATH=\$ROOTSYS/lib

9. Запустите TRTviewer для анализа файла coll\_data/data10\_7TeV.00159113.physics\_L1Calo.daq.RAW.\_lb0390.\_ SFO-10.\_0001.data командой: /opt/mephi/trtvwork/bin/trtviewer -c

/opt/mephi/trtvwork/SR1\_data/pit.conf

/opt/mephi/trtvwork/coll\_data/data10\_7TeV.00159113.physics\_L1Calo. daq.RAW.\_lb0390.\_SFO-10.\_0001.data



Рис. 3.3

10. Выполните анализ данных нажав на кнопку "Start analysis"

11. Постройте цветную карту хитов, превысивших нижний порог "LL hit". Оцените средний уровень шума и выполните поиск мёртвых или слишком шумных каналов/чипов. 12. Постройте цветную карту хитов для переменных "LL on Track" и "<TrailEdge> for long ToT", убедитесь в наличии треков

13. Запустите браузер ROOTa кликнув на "Start Browser". Откройте файл ROS.root и папку "Shifter".

14. Постройте R-T зависимость (гистограмма hRt). Проверить совпадает ли её форма с ожидаемой.

15. Запустите программу TRTViewer для обработки реальных данных от pp столкновений. В режиме Event Display внимательно просмотрите несколько событий. Ответьте – видны ли в этих событиях треки частиц, которые с большой вероятностью являются электронами? Объясните – почему вы так считаете? (см пример на рис. 3.3)



Рис. 3.4

16. Запустите TRTViewer в режиме ATHENA\_Viewer, в котором источником данных являются сохраненные общей для ATLAS online программой мониторинга ROOT файлы. (см пример на рис. 3.4) Просмотрите карту эффективности каналов. Найдите проблемные области в детекторе TRT. Как вы думаете – с чем связаны эти проблемы: с работой высоковольтной системы или работой считывающей электроники? Почему?





17. Запустите TRTViewer в режиме ATHENA\_Viewer, в котором источником данных являются сохраненные общей для ATLAS online программой мониторинга ROOT файлы. Откройте ROOT браузер для просмотра гистограмм. В папке Histogramming-TRT/TRT-Gatherer/SHIFT/TRT/Shift/Expert найдите гистограмму hResidual. (см пример на рис. 3.5) Что она показывает? Профитируйте центральную часть этой гистограммы распределением Гаусса. О чем говорит количественно полученный в результате фитирования параметр Sigma? (см пример на рис. 3.6)



Рис. 3.6

## Приложение

Приведённый в "TRT Detector White Board" список отключенных линий высокого напряжения:

| Date        | Author    | <b>Location</b> | <u>Comment</u>        |
|-------------|-----------|-----------------|-----------------------|
| 27 Apr 2009 | Anatoli   | HVA S19S20      | Off forever. Short on |
| 09:43       | Romaniouk | WA4 1T          | the line.             |
| 03 May 2010 | Anatoli   | HVB S19 M3 A2   | Off forever. Short on |
| 14:55       | Romaniouk |                 | the line.             |

Приведённый в "TRT Detector White Board" список отключенных линий низкого напряжения:

| Date   | <u>Author</u> | <b>Location</b>   | Comment                  |
|--------|---------------|-------------------|--------------------------|
| 27 Apr | Jim           | Endcap A Slice 1  | Two boards permanently   |
| 2009   | Degenhardt    | WA2 (DAQ sector   | dead due to analog short |
| 09:59  |               | 32)               | (FSM state MIXED)        |
| 27 Apr | Jim           | Endcap A Slice 18 | One board permanently    |
| 2009   | Degenhardt    | WB5 (DAQ sector   | dead due to analog short |
| 09:59  |               | 17)               | (FSM state MIXED)        |
| 27 Apr | Jim           | Endcap A Slice 25 | Two boards permanently   |
| 2009   | Degenhardt    | WA2 (DAQ sector   | dead due to analog short |
| 09:59  |               | 24)               | (FSM state MIXED)        |
| 27 Apr | Jim           | Endcap C Slice 26 | Two boards permanently   |
| 2009   | Degenhardt    | WA2 (DAQ sector   | dead due to analog short |
| 09:59  |               | 25)               | (FSM state MIXED)        |