Популярное изложение
Физика высоких энергий и физика астрочастиц (космических частиц) являются сегодня двумя наиболее крупными и активно развивающимися направлениями физики элементарных частиц. Экспериментальные исследования именно в этих областях позволяют ученым изучать физический мир природы в его наиболее загадочных проявлениях, таких как поле Хиггса, темная материя Вселенной и др.
Все силы, возникающие в природе, на самом фундаментальном уровне могут быть описаны с помощью четырёх видов взаимодействий: гравитационного, электромагнитного, слабого и сильного. Первые два действуют на любых расстояниях и поэтому знакомы каждому, вторые два - действуют на крошечных расстояниях и поэтому менее известны. Гравитационное взаимодействие присуще всем телам обладающим массой. К электромагнитному сводятся взаимодействие между заряженными телами и частицами, а также упругие, вязкие, молекулярные, химические и др. Сильное взаимодействие удерживает вместе кварки, составляющие нуклоны (протоны и нейтроны), а также сами протоны и нейтроны в атомных ядрах. Слабое взаимодействие на микроуровне отвечает за выделение энергии в звёздах, в том числе и на Солнце, и ответственно за радиоактивный распад ядер.
Каждое из взаимодействий осуществляется при помощи особых элементарных частиц – переносчиков того или иного взаимодействия: фотоны – переносчики электромагнитного взаимодействия, глюоны – переносчики сильного взаимодействия, векторные бозоны - переносчики слабого взаимодействия, гравитоны, пока не открытые экспериментально, являются переносчиками гравитационного взаимодействия.
Теоретическая модель, объединяющая все четырёх взаимодействиях и накопленные знания об этих переносчиках, называется Стандартной моделью (СМ). СМ на настоящий момент является самой полной и подтвержденной экспериментально моделью строения нашей Вселенной. СМ состоит из семьнадцати (включая недавно открытый Хиггс бозон) элементарных частиц: шести кварков, шести лептонов и пяти бозонов, как представлено на рисунке 1. Однако до сих пор остаётся немало вопросов относительно СМ, в том числе относительно теоретических следствий, вытекающих из неё. Одним из таких направлений является поиск новых частиц, экспериментальное открытие которых приведет к расширению СМ.
Группа ATLAS МИФИ ведет активную работу в этом направлении, осуществляя поиск частиц с зарядами выше элементарного. Такие частицы не предсказываются СМ, но могли бы объяснить природу скрытой массы - гипотетической формы материи, которая не испускает электромагнитное излучение, следовательно, делает невозможным её прямое наблюдение. В предположении о “составной” природе скрытой массы отдельные частицы, “составляющие” её “атомы”, могут наблюдаться экспериментально на коллайдере (ускорителе элементарных частиц), оставляя уникальный след в детекторах частиц.
Не только новые частицы представляют большой интерес для физиков. Исследование свойств уже открытых крупиц материи позволяет дополнять и проверять существующие теоретические модели. Ярким примером таких работ является исследование свойств нейтрино. Даже малейшая разница, например, в массе этой частицы может привести к пересмотру глобальных теорий.
Для таких исследований на ускорителях создаются мощные нейтринные пучки, которые затем направляются на расположенные в сотнях километрах от них детекторы. Эти исследования позволяют изучать нейтринные осцилляции – удивительный эффект превращения нейтрино одного типа в другой. Они также способствуют поискам ответа на вопрос: почему в нашей Вселенной больше вещества, чем антивещества. С другой стороны, на стыке нейтринной физики и физики астрочастиц ведутся поиски нейтрино от астрофизических источников (сверхновые, гамма-всплески, первичные черные дыры и др.). Эти исследования ведут к более глубокому пониманию эволюции звезд и природы катастрофических процессов во Вселенной.
Физика нейтрино уже давно выделилась в самостоятельный раздел физики частиц. Достижения в этом сфере способствовали развитию существующих и формированию новых, переживающих сейчас бурный расцвет разделов науки: нейтринная астрофизика и нейтринная геофизика. При помощи нейтрино ведутся невозможные ранее исследования солнечных и земных недр. Изучение нейтрино от широкого спектра природных и искусственных источников является сегодня одним из тех путей, который может позволить нащупать механизмы расширения Стандартной модели физики частиц и прояснить природу целого ряда наблюдаемых, но еще непонятых явлений.
Другим направлением работы группы НИЯУ МИФИ, связанным с подтверждением предсказаний Стандартной модели, является проверка величины сечения рождения переносчиков слабого взаимодействия, т.е. векторных бозонов на эксперименте ATLAS на Большом адронном коллайдере (БАК). Векторных бозона на данный момент известно 3 вида: W–, W+, Z0. Эти частицы имеют очень большие массы: mW 85mp, mZ 96mp, где mp – масса протона. В МИФИ занимаются исследованием более сложного процесса: рождением Z бозона совместно с фотоном в процессе столкновений протонных пучков на БАК. Такое исследование позволяет проводить проверку Стандартной Модели с очень высокой (ранее недостижимой) точностью. Оно позволяет “засечь” запрещённые в СМ взаимодействия как в случае, если они происходят напрямую, так и в случае, если они реализуются посредством новых неизвестных ранее частиц.
В настоящий момент уже однозначно доказано, что электромагнитные и слабые взаимодействия являются проявлением одного и того же взаимодействия, которое получило название электрослабого (1967 г. С.Вайнберг и А.Салам). Гипотеза состояла в следующем: природа слабого и электромагнитного взаимодействий едина, так как на малых расстояниях слабые взаимодействия сравниваются по силе с электромагнитными, и разница между промежуточными векторными бозонами и фотонами стирается. Иными словами, при энергиях, превышающих несколько сотен гигаэлектронвольт электромагнитное и слабое взаимодействия становятся неразличимыми по интенсивности, они как бы сливаются в одно электрослабое взаимодействие.
Таким образом, вместо четырёх фундаментальных взаимодействиях можно говорить лишь о трёх: гравитационном, сильном и электрослабом. Из этой гипотезы следует, что на малых расстояниях промежуточные векторные бозоны не отличаются по своим свойствам от фотонов, а это значит, что промежуточные векторные бозоны и фотоны это по сути два проявления одной и той же частицы – переносчика электрослабого взаимодействия (иначе сила взаимодействия не может быть одинаковой). Это возможно только тогда, когда выполняется принцип локальной калибровочной инвариантности (симметрии).
Выяснилось, что при изменении масштаба, то есть при уменьшении расстояния, переносчики электрослабого взаимодействия переходят из одного своего проявления – фотонов – в другое проявление – промежуточные векторные бозоны. Однако, данное предположение поставило новый вопрос: каким образом промежуточные векторные бозоны и фотоны могут быть проявлениями одних и тех же частиц, если у фотонов масса равна нулю, а промежуточные векторные бозоны имеют очень большие массы?
Для решения этой проблемы в 1964 году английским физиком Питером Хиггсом был предложен механизм, впоследствии названый механизмом Хиггса. Этот механизм основывается на идее спонтанного нарушения симметрии (Spontaneous symmetry breaking - SSB). Явление SSB обычно определяют следующим образом. Физическая система имеет спонтанно нарушенную симметрию, если взаимодействия, определяющие динамику системы, обладают одной симметрией, а основное состояние - другой. Примером спонтанного нарушения симметрии может служить модель с шариком, покоящимся на вершине полностью симметричной горы. Основное состояние при этом будет обладать осевой симметрией, но данное состояние будет неустойчиво. Если шарик предоставить самому себе, то при сколь угодно малом воздействии он скатится с вершины и система перейдёт в состояние устойчивого равновесия. Таким образом изначально симметричное состояние переходит в несимметричное - происходит спонтанное нарушение симметрии. Когда, в свою очередь, спонтанное нарушение симметрии происходит в калибровочных теориях, это явление называют механизмом Хиггса. В теории электрослабого взаимодействия при спонтанном нарушении симметрии появляются четыре безмассовых намбу-голдстоуновских бозона (следствие так называемой теоремы Голдстоуна), которые никак не проявляются в физическом спектре, но объединяются с безмассовыми калибровочными бозонами, придавая им массу. Таким образом, появляются четыре массивные частицы: W–, W+, Z0-бозоны и бозон Хиггса.
Изложенные выше положения составляют единую теорию электрослабого взаимодействия. Именно из неё следовало существование трёх видов промежуточных векторных бозонов W–, W+, Z0, а также предсказаны значения их масс. Экспериментальное открытие промежуточных векторных бозонов в 1983 году подтвердило справедливость единой теории электрослабого взаимодействия.
Основным методом исследования в физике элементарных частиц является метод рассеяния, то есть столкновение различных частиц друг с другом, в результате которого рождаются новые частицы. В последнее время широко применяются коллайдеры – ускорители, в которых сталкиваются два пучка частиц с нулевым суммарным импульсом (частицы из разных пучков имеют равные по модулю, но противоположно направленные импульсы). Говорят, что процесс рассматривается в системе центра инерции сталкивающихся частиц. Рождающиеся в коллайдере новые частицы регистрируются различными детекторами. В эксперименте по поиску векторных бозонов на протонном синхротроне на протонном синхротроне сталкивались протонный и антипротонный пучки, в каждом из которых энергия частицы равна Е. Тогда суммарная энергия столкновения двух частиц равна 2Е. При условии 2Е > Мс2 в этом столкновении может быть рождена частица массой М.
Кварк u из протона и антикварк d из антипротона могут слиться в W+. Аналогично, пары u кварка и его партнера из антимира и d кварка с антипартнером могут дать при слиянии Z0-бозон, пара u анти u кварка – W–-бозон. Родившись, эти частицы быстро распадаются на элекроны, мюоны и нейтрино и их антипартнеров. Позитрон или положительно заряженный мюон с высокой эффективностью могут быть зарегистрированы детекторами, и это будет служить признаком рождения промежуточного векторного бозона. Нейтрино при этом улетают, унося значительную часть энергии. Так экспериментальное открытие векторных промежуточных бозонов подтвердило справедливость единой теории электрослабого взаимодействия.
В настоящий момент самым грандиозным экспериментом в области физики высоких энергий можно по праву считать Большой адронный коллайдер. На пути разгоняемых протонных пучков в точках их столкновений установлены детекторы, регистрирующие разлетающиеся осколки. Одним из таких детекторов является детектор переходного излучения TRT. Этот детектор помогает измерить треки частиц и отделить один тип частиц от другого, а именно электроны от пи-мезонов, что является очень полезной информацией для многих физических анализов. Группа ATLAS МИФИ имеет непосредственное отношение как к разработке этого детектора, так и к поддержанию его в рабочем состоянии в экстремальных условиях внутри ускорителя.
Помимо протонов Большой адронный коллайдер позволяет разгонять и сталкивать друг с другом ядра химических элементов. Каждый год столкновениям ядер свинца отводится порядка одного месяца в рамках научной программы коллайдера. Основная цель таких столкновений — это изучение свойств адронной материи при сверхвысоких давлениях и температурах, особый интерес представляет промежуточная фаза таких столкновений — кварк-глюонная материя.
Главное отличие научных задач в рамках ядро-ядерных столкновений от поиска хиггсовского бозона, суперсимметрии и разнообразных новых частиц заключается в том, что при изучении столкновений ядер возникновения новых частиц не ожидается, но с их помощью можно лучше понять как работает сильное взаимодействие.
Динамическое описание сильного взаимодействия — это исключительно важная (в том числе и с практической точки зрения), сложная и многогранная задача современной физики. Сильное взаимодействие обеспечивает существование конфайнмента, благодаря нему протоны и нейтроны в ядрах удерживаются вместе, и при этом не сливаются друг с другом. При этом, даже в вакууме , вдали от протонов и нейтронов, сильное взаимодействие «живет» исключительно нетривиальной жизнью, что значительно усложняет задачу по его изучению. По этому, описание сильного взаимодействия во всех его проявлениях является не менее важной задачей, чем открытие хиггсовского бозона или суперсимметрии.
Время существования кварк-глюонной материи — миллиардные доли секунды, поэтому не возможно напрямую в эксперименте измерять поведение кварк-глюонной материи и ответы на все вопросы приходится получать из косвенных методов при помощи регистрации многочисленных адронов, рожденных в столкновении.
Среди многообразия доступных для наблюдения величин есть несколько ключевых, хорошо «зарекомендовавших себя» в предыдущих коллайдерных экспериментах с более низкими энергиями. Физики группы НИЯУ МИФИ в ATLAS занимаются несколькими из них. Глобальными и наиболее просто измеряемыми характеристиками в эксперименте в столкновениях релятивистских тяжелых ядер являются множественность заряженных частиц и распределение заряженных частиц по поперечному импульсу. По их свойствам можно делать важные заключения о новом состоянии ядерного вещества - кварк-глюонной материи (КГМ).
НИЯУ МИФИ имеет также длительный опыт успешного участия в крупном международном мегапроекте ALICE в CERN. Работы проводятся в тесном сотрудничестве с НИЦ «Курчатовский институт» - координатором российского участия в этом мегапроекте. Эксперимент ALICE специально разработан и создан для экспериментов по физике ядро-ядерных столкновений при энергиях Большого адронного коллайдера (БАК) в CERN.
Еще одна важнейшая задача ядерной физики - получение и изучение свойств ядер, находящихся в экстремальном состоянии - экзотических ядер. Примерами являются ядра, имеющие большой угловой момент («бешено» вращающиеся ядра), высокую энергию возбуждения («горячие» ядра), сильно деформированные ядра (также ядра с необычной конфигурацией), ядра с аномальным числом нейтронов или протонов (нейтронно-избыточные или нейтронно-дефицитные ядра и протонно-избыточные или протонно-дефицитные ядра), сверхтяжёлые ядра с числом протонов Z > 110.
Изучение свойств ядерной материи в экстремальных состояниях дает информацию о свойствах микромира и позволяет моделировать различные процессы, происходящие во Вселенной. Поэтому, синтезируя и изучая экзотические состояния ядер, ученые делают важные шаги в понимании не только фундаментальных свойств самого ядра, но и всей Вселенной. Например, внутри звезд и при взрывах сверхновых чрезвычайно высокие температуры и давления приводят к созданию частиц и ядер, которые при обычных условиях не существуют. Количество этих экзотических нестабильных ядер, перемешивающихся в котле Вселенной, находящихся далеко за пределами широкого спектра стабильных изотопов, обычно встречающихся на Земле.
Производство и исследование таких экзотических ядер в современных ускорителях представляет интерес по двум причинам. Во-первых, ученые могут проверить теоретические модели, описывающие свойства ядер не наблюдаемых на Земле в стабильном состоянии. Во-вторых, мы сегодня знаем, что синтез элементов в звездах происходит с участием экзотических ядер. Распад этих ядер происходит через испускание бета-частиц (т.е. высокоскоростных электронов) до появления стабильных ядер, известных на Земле. Таким образом, образование химических элементов (нуклеосинтез) и их распространенность определяется свойствами этих экзотических ядер. Тем самым, исследование экзотических ядер позволяет нам решать важные задачи астрофизики и космологии. Сотрудники НИЯУ МИФИ кафедры элементарных частиц ведут активную исследовательскую работу по поиску экзотических ядер.
Не только предсказания СМ и новые частицы учёные со всего мира надеются разглядеть в сложной мозаике из следов частиц, оставленных в детекторах. Дополнительные пространственные измерения – еще одно направление в физике высоких энергий (ФВЭ), которое занимает умы физиков. Идея о том, что число пространственных измерений в нашем мире может быть больше трех, была выдвинута еще в первой половине XX века в работах Т. Калуцы и О. Клейна. В настоящее время данная идея лежит в основе практически всех попыток объединения четырех физических взаимодействий. Возникает вопрос: почему мы не наблюдаем дополнительных измерений? Один из наиболее популярных ответов на данный вопрос заключается в предположении о компактности (малости) дополнительных измерений: наименьший достижимый масштаб расстояний в современных физических экспериментах составляет порядка 10^(-18) см, и если компактные дополнительные пространства существуют, они должны иметь размер меньше 10^(-18) см.
Помимо чисто теоретических аспектов, широко обсуждаются и возможности экспериментального обнаружения дополнительных пространственных измерений. В частности, предполагается, что в высокоэнергичных столкновениях частиц на Большом адронном коллайдере могут рождаться частицы, которые “чувствуют” дополнительные пространства и могут проникать в них. В таком случае, часть суммарной энергии сталкивающихся частиц может теряться для наблюдателя, измеряющего ее в нашем четырехмерном пространстве-времени. Обнаружение подобного дисбаланса энергий явилось бы косвенным свидетельством многомерности пространства.
Все современные эксперименты в области ФВЭ не могли бы обойтись без не менее сложных вычислительных систем и алгоритмов. ФВЭ подразумевает обработку колоссального объема данных, которая невозможна без использования распределенных вычислительных систем: начиная от всем известной технологии всемирной паутины (World Wide Web), придуманной в ЦЕРН и повлиявшей на весь мир, и заканчивая использованием супер компьютеров и современных облачных систем. Так в грид-системе эксперимента АТЛАС за первые 5 лет работы эксперимента была обработано более 100 Пбайт данных (больше чем архив всего интернета в данный момент). При этом, объем данных постоянно возрастает, что вынуждает постоянно развивать новые технологии, которые впоследствии находят применение во всех областях науки.
В скором времени в статью будет добавлена информация по следующим разделам:
Космомикрофизика
Детекторы элементарных частиц